Jumat, 11 Juni 2010

Mesin Pendingin dan Pemanas

Mesin kalor dan mesin pendingin menggunakan siklus energi kalor secara spontan dan tidak spontan. Jika mesin kalor kalor menyerap energi \bf{Q_1} dari benda bersuhu tinggi ~ sebab \bf secara \ spontan \ kalor \ melepaskan \ panas \ atau \ energinya \ pada \ suhu \ tinggi dan benda yang bersuhu rendah akan secara spontan menyerap energi tersebut. Benda bersuhu rendah dinyatakan mempunyai energi sebesar \bf{Q_2}.

Berdasar prinsip mesin pemanas tersebut, maka perhitungan efisiensi mesin panas menjadi :

\eta = \frac{Q_1-Q_2}{Q_1} x 100%

Mengapa dihitung efisiensi ? Berdasarkan pernyataan Clausius, bahwa tidak ada mesin yang menyerap energi seluruhnya kemudian mampu mengubah seluruh energi yang diserap sepenuhnya menjadi kerja/ usaha nah, berdasar pernyataan tersebut maka muncul efisiensi mesin (atau nilai kinerja mesin) yang dinyatakan dengan koefisien \bf \eta yang dibaca “eta”

pertanyaannya mengapa \bf{Q_1} dikurangi \bf{Q_2} ? Karena \bf{Q_1} adalah energi yang diserap mesin pada tandon (reservoir energi) bersuhu tinggi yang akan melepaskan kalor (energi) secara spontan kepada \bf{Q_2} (reservoir atau tandon energi bersuhu rendah) yang berfungsi menyerap energi tersebut.

Sementara mesin pendingin berprinsip, menyerap energi panas dari dalam suatu ruang dan kemudian menyedot dan membuangnya ke lingkungan. Energi yang dibuang ke lingkungan itu suhunya lebih tinggi. Mengapa ? Karena untuk menyedot energi dari dalam ruang diperlukan pompa pengisap sebab energi dari benda bersuhu rendah tidak dapat mengalir secara spontan ! Sehingga energi dalam ruang dinyatakan sebagai
\bf{Q_2} dan energi panas yang dibuang ke luar sistem menuju lingkungan dinyatakan sebagai \bf{Q_1}

Bentuk persamaan efisiensi mesin pendingin (koefisien kinerja mesin pendingin dinyatakan dengan huruf cp atau kk) adalah :

cp = kk = \frac{Q_2}{Q_1 - Q_2} karena \bf{Q_1} selalu lebih besar nilainya dari \bf{Q_2} maka hasil pembagian fungsi tersebut selalu lebih dari angka 1.

Perubahan wujud, Penguapan, Pendidihan, Kelembaban


Pernah lihat embun-kah ? kalau belum, coba bangun paginya dipercepat :( perhatikan dedaunan di sekitar rumahmu… Aneh ya, malamnya tidak ada hujan, pagi hari tetes-tetes air bergentayangan di dedaunan. Tuh jatuhnya dari langit keberapa ya ;)

Konon katanya air yang dipanaskan di puncak gunung lebih cepat mendidih. Sebaliknya air yang dipanaskan di tepi pantai lebih lama mendidih… itu sich konon katanya. Kalau menurutmu bagaimanakah ? sebaiknya dibuktikan saja… ajak beberapa temanmu untuk melakukan pembuktian. Pinjam termometer dari laboratorium sekolah atau beli saja di toko. Terus siapkan juga alat masak memasak. Wah, kayanya lebih seru kalau ngajak dengan pacar kesayangan juga neh… Minggu ini jalan-jalan ke pantai, minggu berikutnya jalan-jalan ke puncak. Sambil menyelam minum air (bisa tenggelam dunk), sambil rekreasi dirimu dan dirinya melakukan percobaan fisika… gunakan alat masak memasak untuk memanaskan air… Jangan lupa masukan termometer ke dalam air, sehingga suhu air bisa diketahui. Pada saat air mulai mendidih, biasanya air raksa dalam termometer tidak jalan-jalan lagi… Catat suhu air ketika terjadi proses pendidihan… bandingkan hasil percobaanmu di tepi pantai dan di puncak.

GAS RIIL DAN PERUBAHAN WUJUD

Pada pembahasan mengenai hukum gas ideal, gurumuda sudah menjelaskan kepada dirimu bahwa hukum gas ideal hanya bisa menggambarkan perilaku gas riil secara akurat hanya ketika tekanan dan kerapatan gas riil tidak terlalu besar. Apabila tekanan dan kerapatan gas riil cukup besar, hukum gas ideal sudah tidak memberikan hasil yang akurat. Demikian juga ketika suhu gas riil mendekati titik didih. Hal ini sebenarnya berkaitan dengan interaksi yang terjadi antara molekul-molekul gas riil. Ingat ya, tekanan gas biasanya berbanding terbalik dengan volume gas. Ketika tekanan gas cukup besar, volume gas biasanya menjadi lebih kecil. Karena volume gas kecil, maka jarak antara molekul-molekul gas menjadi lebih dekat… Biar dirimu paham, tataplah gambar di bawah dengan penuh kelembutan…

perubahan-wujud-penguapan-kelembaban-1

Titik hitam mewakili molekul-molekul gas. Gambar ini disederhanakan menjadi dua dimensi. Anggap saja ini gambar 3 dimensi… volume kotak = panjang x lebar x tinggi. Volume kotak bisa dianggap sebagai volume gas. Btw, ini cuma ilustrasi saja… Dalam kenyataannya, molekul-molekul gas tidak diam seperti titik dalam kotak. Molekul-molekul gas selalu bergerak… Nah, ketika volume kotak cukup besar, jarak antara molekul cukup jauh (gambar kiri). Sebaliknya, ketika volume kotak menjadi kecil, jarak antara molekul menjadi lebih dekat (gambar kanan). Pada saat jarak antara molekul menjadi lebih dekat, molekul-molekul tersebut saling tarik menarik. Mirip seperti ketika dirimu mendekatkan sepotong besi pada magnet. Kalau jarak antara magnet dan besi cukup jauh, magnet tidak bisa menarik besi. Tapi kalau jarak antara magnet dan besi dekat, si besi langsung ditarik semakin dekat. Ini cuma ilustrasi saja… dirimu jangan membayangkan molekul seperti magnet dan besi. Kalau magnet dan besi saling nempel, molekul tidak saling nempel ;) Kasusnya beda… Jadi molekul-molekul gas berprilaku seperti magnet dan besi dalam ilustrasi di atas… ketika jarak antara molekul cukup dekat, molekul-molekul tersebut saling tarik menarik. Adanya gaya tarik ini yang menyebabkan jarak antara molekul semakin dekat (volume gas semakin kecil). Biasanya hal ini terjadi pada saat tekanan gas cukup besar (Tekanan besar, volume kecil. Volume kecil, jarak antara molekul semakin dekat). Karenanya jangan pake heran kalau hukum gas ideal tidak memberikan hasil yang akurat ketika tekanan dan kerapatan gas riil cukup besar…

Diagram Tekanan vs Volume

Untuk lebih memahami persoalan di atas, mari kita tinjau diagram yang menyatakan hubungan antara tekanan dan volume gas. Tataplah diagram di bawah dengan penuh kelembutan…

perubahan-wujud-penguapan-kelembaban-2

Kurva 1, 2, 3 dan 4 menunjukkan perilaku gas yang sama pada suhu yang berbeda. Suhu gas yang ditunjukkan kurva 1 lebih tinggi dari kurva 2. Suhu gas yang ditunjukkan kurva 2 lebih tinggi dari kurva 3. Suhu gas yang ditunjukkan kurva 3 lebih tinggi dari kurva 4. Kurva tuh garis miring yang ada di tengah diagram… ingat ya, suhu gas selalu tetap… yang berubah hanya tekanan (P) dan volume (V) gas…

Silahkan perhatikan kurva 1′ dan 2′… Menurut hukum gas ideal, garis yang dimulai dari angka 1 harus berakhir di angka 1′. Demikian juga garis yang dimulai dari angka 2 harus berakhir di angka 2′ (ingat lagi grafik PV hukum om Boyle, pada pembahasan mengenai hukum-hukum gas). Kenyataan yang dialami oleh gas riil tidak sesuai dengan ramalan hukum gas ideal. Ketika tekanan gas cukup besar, volume gas menjadi lebih kecil dan menyimpang dari ramalan hukum gas ideal (bandingkan dengan kurva 1 dan kurva 2). Besarnya penyimpangan volume gas juga bergantung pada suhu. Jika suhu gas lebih rendah dan mendekati titik cair alias titik didih (titik b), gas biasanya mengalami penyimpangan volume yang lebih besar dibandingkan ketika suhunya lebih tinggi (bandingkan kurva 1, 2, 3 dan 4). Hal ini dipengaruhi oleh adanya gaya tarik antara molekul-molekul gas, seperti yang telah gurumuda jelaskan sebelumnya…

Kurva 3 pada diagram di atas menunjukkan perilaku suatu zat pada suhu kritisnya. Titik c yang dilalui kurva 3 dikenal dengan julukan titik kritis… Pada suhu yang lebih tinggi dari suhu kritis, wujud gas tidak bisa berubah menjadi wujud cair walaupun diberikan tekanan yang sangat besar (bandingkan dengan kurva 2 dan kurva 1). Tekanan yang diberikan hanya membuat volume gas menjadi semakin kecil, tetapi tidak bisa mengubah wujud gas menjadi cair… Sebaliknya, pada suhu yang lebih rendah dari suhu kritisnya, wujud gas akan berubah menjadi cair jika diberikan tekanan tertentu (bandingkan dengan kurva 3). Besarnya tekanan yang bisa mengubah wujud gas menjadi cair pada suhu kritis dikenal dengan julukan tekanan kritis. Setiap zat memiliki suhu kritis dan tekanan kritis yang berbeda…

Zat Suhu Kritis (oC) Tekanan Kritis (atm)
Helium (He) -267,9 2,3
Hidrogen (H2) -239,9 12,8
Nitrogen (N2) -147 33,5
Oksigen (O2) -118 50
Karbondioksida(CO2) 31 72,8
Air (H2O) 374 218

Kurva 4 pada diagram di atas menunjukkan proses perubahan wujud dari gas menjadi cair. Luasan yang diarsir (menyerupai gunung ;) ) merupakan daerah di mana wujud gas dan wujud cair berada dalam kesetimbangan. Mula-mula volume gas cukup besar… setelah tekanan gas bertambah, volume gas menjadi semakin kecil hingga mencapai titik b (titik b adalah titik cair alias titik didih). Ketika tiba di titik b, gas mulai berubah wujud menjadi cair… Selama proses perubahan wujud dari gas menjadi cair (dari titik b hingga titik a), volume zat menjadi semakin kecil walaupun tidak ada penambahan tekanan (ditandai dengan garis lurus). Pada titik a, semua gas telah berubah wujud menjadi cair… Setelah tiba di titik a, penambahan tekanan pada zat hanya mengakibatkan perubahan volume yang sangat kecil (ditandai dengan bentuk kurva yang sangat curam).

Dalam kehidupan sehari-hari, kita seringkali menggunakan istilah uap dan gas… misalnya uap air atau gas nitrogen. Hampir tidak pernah kita menyebut uap air sebagai gas air, walaupun uap air sebenarnya merupakan wujud gas dari air. Demikian juga dengan nitrogen, oksigen dkk… nitrogen atau oksigen biasa disebut sebagai gas… Gas dan uap memiliki makna yang berbeda. Apabila wujud gas dari suatu zat berada di bawah suhu kritis zat tersebut, maka kita menyebutnya sebagai uap. Sebaliknya, jika wujud gas dari suatu zat berada di atas suhu kritis zat tersebut, maka kita menyebutnya sebagai gas. (bandingkan dengan diagram PV dan tabel suhu kritis di atas).

Diagram Tekanan vs Suhu (Diagram Fase)

Sebelumnya gurumuda sudah menjelaskan perilaku zat, menggunakan diagram Tekanan vs Volume. Selain menggunakan diagram PV, perilaku zat bisa dijelaskan menggunakan diagram Tekanan (P) vs Suhu (T). Diagram PT biasa disebut sebagai diagram fase… disebut diagram fase karena diagram ini digunakan untuk membandingkan fase alias wujud zat (fase = wujud. Jangan pake bingung)…

Salah satu zat yang sering mengalami perubahan wujud adalah air… Karenanya, gurumuda menggunakan contoh diagram fase air saja, biar dirimu lebih nyambung…

perubahan-wujud-penguapan-kelembaban-3

Tataplah diagram di atas dengan penuh kelembutan ;) Terdapat tiga kurva pada diagram, yakni kurva penguapan, kurva peleburan dan kurva sublimasi…

Kurva penguapan menunjukkan titik-titik di mana wujud cair dan uap berada dalam keseimbangan. Titik di mana wujud cair dan uap berada dalam keseimbangan di sebut titik cair alias titik didih (Di sebut titik cair karena pada titik ini uap bisa mencair dan berubah wujud menjadi air. Disebut titik didih karena pada titik ini air bisa mendidih dan berubah wujud menjadi uap). Dengan demikian, kurva penguapan sebenarnya merupakan grafik yang menyatakan hubungan antara tekanan (P) dan suhu titik didih/titik cair. Tampak bahwa semakin kecil tekanan, semakin rendah suhu titik didih air, atau semakin besar tekanan, semakin tinggi suhu titik didih air. Pada tekanan 1 atm, suhu titik didih air = 100 oC. Sebaliknya pada tekanan 218 atm, suhu titik didih air = 374 oC. Tekanan 218 atm disebut juga sebagai tekanan kritis air, sedangkan suhu 374 oC disebut juga sebagai suhu kritis air… Apabila suhu uap kurang dari 374 oC, maka uap bisa berubah wujud menjadi cair jika diberikan tekanan sebesar 374 oC. Tekanan sebesar apapun tidak bisa mengubah uap menjadi cair jika suhunya lebih besar dari 218 oC. Pahami perlahan-lahan penjelasan gurumuda ini, lalu coba baca sendiri diagram fase air di atas :( Masih banyak informasi yang belum gurumuda jelaskan…

Kurva peleburan menunjukkan titik-titik di mana wujud cair dan padat berada dalam keseimbangan. Titik di mana wujud cair dan padat berada dalam keseimbangan disebut titik lebur alias titik beku (Disebut titik lebur karena pada titik ini es bisa melebur menjadi air. Disebut titik beku karena pada titik ini, air bisa membeku menjadi es). Dengan demikian, kurva peleburan sebenarnya merupakan grafik yang menyatakan hubungan antara tekanan (P) dan suhu titik lebur/titik beku… Pada tekanan 1 atm, suhu titik beku air (atau titik lebur es) = 0 oC. Sebaliknya pada tekanan 218 atm, suhu titik beku air (atau titik lebur es) kurang dari 0 oC. Perhatikan bahwa pada tekanan 1 atm, air berada dalam wujud cair jika suhunya berada di antara 0 oC dan 100 oC. Air berada dalam wujud padat jika pada tekanan 1 atm, suhunya kurang dari 0 oC atau air berada dalam wujud uap jika pada tekanan 1 atm, suhunya lebih dari 100 oC.

Kurva sublimasi menunjukkan titik-titik di mana wujud padat dan uap berada dalam keseimbangan. Titik di mana wujud padat dan uap berada dalam keseimbangan disebut titik sublimasi. Dengan demikian, kurva sublimasi sebenarnya merupakan grafik yang menyatakan hubungan antara tekanan (P) dan suhu titik sublimasi… Oya, sublimasi tuh proses perubahan wujud padat menjadi uap, tanpa melewati wujud cair… Biasanya sublimasi hanya terjadi pada tekanan rendah. es hanya bisa menyublim jika suhunya kurang dari 0,01 oC dan tekanan lebih kecil dari 0,0060 atm…

Titik di mana ketiga kurva saling berpotongan dikenal dengan julukan titik gurumuda ;) serius kali dirimu ini… nyantai dulu lah… oya, bukan titik gurumuda, bukan juga titik gurutua, tetapi titik tripel (tripel = perpotongan 3 garis… ini cuma terjemahan kasar saja… terjemahan halus cari sendiri ya ;) ) Wujud padat, cair dan uap bisa hidup berdampingan dengan damai hanya pada titik tripel. He2… Maksudnya, ketiga wujud zat bisa berada dalam keseimbangan hanya pada titik tripel…

Data Titik Tripel
Zat Suhu (K) Tekanan (Pa = N/m2)
Hidrogen 13,80 7,03 x 103
Deuterium 18,63 17,1 x 103
Neon 24,56 43,2 x 103
Oksigen 54,36 0,152 x 103
Nitrogen 63,18 12,5 x 103
Amonia 195,40 6,06 x 103
Sulfur dioksida 197,68 0,167 x 103
Karbon dioksida 216,55 516 x 103
Air 273,16 0,610 x 103

Di bawah ini adalah diagram fase untuk karbon dioksida… Pahami penjelasan gurumuda sebelumnya, lalu silahkan jelaskan diagram ini… Jika bingung berlanjut, silahkan bertanya melalui kolom komentar…

perubahan-wujud-penguapan-kelembaban-4

Catatan :

Perhatikan bahwa skala pada diagram fase air dan diagram fase karbon dioksida tidak linear…

Penguapan

Pernah menjemur pakaian basah ? Pakaian yang pada mulanya basah bisa mengering setelah dijemur di bawah sinar matahari… Hal ini kelihatannya sangat sepele sehingga jarang dipersoalkan. Btw, bisakah dirimu menjelaskan mengapa pakaian basah bisa mengering ? Dari sononya memang sudah begitu kok ;) Ada lagi kasus yang mirip… Air yang pada mulanya panas bisa berubah menjadi dingin setelah dibiarkan selama beberapa saat… teh panas, kopi susu hangat dkk akan mengalami nasib yang sama… Lebih aneh lagi, kalau dirimu meletakkan segelas air di luar rumah sepanjang malam, ketinggian air akan turun pada waktu pagi… mengapa bisa demikian-kah ?

Kata eyang, pakaian bisa mengering karena adanya penguapan. Teh panas juga bisa menjadi dingin karena adanya penguapan… Terus penguapan tuh sebenarnya apa sich ? penguapan adalah proses menguapnya air yang lagi ngantuk n pingin tidur… hiks2 ;)

Proses penguapan bisa dijelaskan menggunakan teori kinetik. Seperti molekul-molekul gas, molekul-molekul air juga suka bergerak ke sana kemari. Bedanya, molekul-molekul air tidak bisa tercerai berai karena gaya tarik antara molekul masih mampu menahan mereka untuk tetap ngumpul. Sebaliknya, gaya tarik antara molekul-molekul gas sangat lemah, sehingga molekul-molekul gas tidak bisa ngumpul. Mengenai hal ini sudah gurumuda jelaskan pada pembahasan mengenai wujud-wujud zat. Nah, ketika bergerak ke sana ke mari, molekul-molekul air tentu saja punya kelajuan. Ada molekul air yang mempunyai kelajuan yang besar, ada juga molekul air yang mempunyai kelajuan yang kecil. Distribusi kelajuan molekul air menyerupai distribusi maxwell (ingat lagi pembahasan mengenai distribusi kelajuan molekul).

Peristiwa penguapan biasanya terjadi ketika kelajuan molekul air cukup besar, sehingga gaya tarik antara molekul-molekul air tidak mampu menahannya untuk ngumpul. Mirip seperti roket yang hendak tamasya ke luar angkasa… Kelajuan roket cukup besar sehingga gaya gravitasi bumi tidak mampu menahannya untuk tetap tinggal di bumi. Perlu diketahui bahwa hanya molekul-molekul yang mempunyai kelajuan besar saja yang mampu melepaskan diri dari gaya tarik antara molekul. Molekul-molekul yang kelajuannya kecil tidak bisa kabur alias tetap ngumpul.

Ingat ya, molekul-molekul air juga punya massa. Karena punya massa dan kecepatan/kelajuan, maka molekul-molekul air tentu saja mempunyai energi kinetik (EK = ½ mv2). Molekul air yang mempunyai kelajuan yang tinggi memiliki energi kinetik yang lebih besar dibandingkan dengan molekul air yang mempunyai kelajuan yang rendah. Dengan demikian, kita bisa mengatakan bahwa molekul-molekul air yang bisa melepaskan diri dari gaya tarik antara molekul (molekul-molekul air yang kabur menjadi uap) memiliki energi kinetik yang cukup besar… Biasanya energi kinetik molekul air semakin bertambah seiring meningkatnya suhu air. Karenanya apabila suhu air cukup tinggi, maka energi kinetik molekul-molekul air semakin bertambah. Dengan demikian, akan semakin banyak molekul air yang kabur menjadi uap. Hal ini sesuai dengan hasil penelitian yang menunjukkan bahwa laju penguapan biasanya lebih besar pada suhu yang tinggi…

Ketika kita menjemur pakaian basah di bawah sinar matahari, pakaian basah tersebut menyerap kalor yang dipancarkan oleh matahari (terjadi perpindahan kalor secara radiasi). Karena kalor merupakan energi yang berpindah akibat adanya perbedaan suhu, maka kita bisa mengatakan bahwa setelah mendapat sumbangan kalor dari matahari, energi kinetik molekul-molekul air yang bergentayangan dalam pakaian semakin bertambah. Karena energi kinetiknya bertambah, maka molekul-molekul air tentu saja bergerak semakin cepat (kelajuan molekul air meningkat). Setelah kelajuan atau energi kinetiknya mencapai nilai tertentu, molekul-molekul air tersebut bisa melepaskan diri dari gaya tarik antara molekul dan kabur menjadi uap… Pakaianku dan pakaianmu pun mengering ;) Perlu diketahui bahwa mengeringnya pakaian basah tidak hanya dipengaruhi oleh adanya tambahan kalor dari matahari. Pakaian basah juga bisa mengering karena adanya tambahan kalor dari udara hangat yang berada di sekitar pakaian tersebut (kalor berpindah secara konduksi dari udara menuju pakaian basah). Jalan ceritanya seperti ini… Pada siang hari yang terik, biasanya tanah atau lantai lebih cepat panas… tanah cepat panas karena kalor jenisnya cukup besar. Tanah yang kepanasan tadi memanaskan udara yang berada di atasnya (dalam hal ini terjadi perpindahan kalor secara konduksi). Udara yang kepanasan tadi memuai (massa jenisnya berkurang) dan bergerak ke atas… Ketika melewati pakaian basah, molekul-molekul udara menumbuk molekul-molekul air yang bergenyatangan dalam pakaian. Molekul-molekul air yang sedang pacaran pun bergerak semakin cepat… Karena bergerak semakin cepat, maka energi kinetik molekul-molekul air tersebut semakin bertambah. Molekul-molekul air yang bergerak cepat tadi menumbuk teman-temannya yang lain… Karena ditumbuk terus menerus oleh molekul udara, maka molekul-molekul air bergerak semakin cepat (energi kinetiknya bertambah). Setelah kecepatan atau energi kinetiknya mencapai nilai tertentu, molekul-molekul air yang bergerak cepat tadi bisa melepaskan diri dari gaya tarik antara molekul dan kabur menjadi uap… ingat ya, energi kinetik molekul air atau molekul udara berkaitan erat dengan suhu. Ketika gurumuda mengatakan bahwa energi kinetik molekul-molekul air besar, pada saat yang sama suhu air tinggi. Atau sebaliknya, ketika suhu air tinggi, energi kinetik molekul-molekul air pasti besar. Energi kinetik juga berkaitan dengan kelajuan (ingat saja rumus EK = ½ mv2). Semakin besar energi kinetik molekul, semakin besar kelajuan molekul. Atau sebaliknya, semakin besar kelajuan molekul, semakin besar energi kinetik molekul tersebut… Sampai di sini dirimu belum pusink2 khan ? hiks2… piss ;)

Bagaimanakah dengan air panas dkk ? air panas biasanya memiliki suhu yang tinggi… Karena suhu air tinggi, maka molekul-molekul air yang bergentayangan dalam air tentu saja mempunyai energi kinetik rata-rata yang besar. Karena energi kinetik rata-rata molekul-molekul air besar, maka banyak molekul-molekul air yang mempunyai kelajuan yang tinggi (banyak molekul air yang bergerak cepat)… molekul-molekul air yang mempunyai kelajuan yang tinggi bisa melepaskan diri dari gaya tarik antar molekul dan kabur menjadi uap… Ingat ya, yang kabur menjadi uap hanya molekul-molekul air yang kelajuannya tinggi (molekul-molekul air yang energi kinetiknya besar)… molekul-molekul air yang kelajuannya rendah (molekul-molekul air yang energi kinetiknya kecil) tidak bisa kabur alias tetap ngumpul… Dengan demikian, ketika molekul-molekul air yang kelajuannya tinggi kabur menjadi uap, energi kinetik rata-rata molekul-molekul air yang tetap ngumpul menjadi lebih kecil. Semakin kecil energi kinetik rata-rata, semakin rendah suhu air (air menjadi dingin). Berdasarkan uraian singkat ini, kita bisa mengatakan bahwa penguapan sebenarnya merupakan proses pendinginan

Proses pendinginan akibat adanya penguapan selalu kita alami dalam kehidupan sehari-hari… pada saat udara cukup panas, banyak kalor yang diserap oleh tubuh. Untuk menjaga agar suhu tubuh selalu konstan, biasanya tubuh mengeluarkan kalor melalui air keringat… Karena air keringat mendapat tambahan kalor dari matahari dan udara yang ada di sekitarnya maka energi kinetik molekul air keringat bertambah. Karena energi kinetik molekul air bertambah maka kelajuan molekul-molekul air keringat tentu saja meningkat… molekul-molekul keringat pun kabur menjadi uap. Ketika keringat menguap, tubuh kita pun terasa sejuk… lega rasanya. Masih ada contoh lain… Biasanya setelah mandi, tubuh kita terasa sejuk. Hal ini disebabkan karena air yang nempel di permukaan kulit mengalami proses penguapan…

Proses penguapan yang telah gurumuda jelaskan sebelumnya selalu terjadi setiap hari. Air laut, air danau, air sungai, air comberan, air mata ;) juga bisa menguap… Banyak proses penguapan terjadi akibat adanya sumbangan kalor dari matahari (perpindahan kalor secara radiasi). Karena mendapat sumbangan kalor, air yang ada di permukaan sungai dkk menjadi kepanasan (suhu air yang ada di permukaan meningkat). Ketika suhu air yang ada di permukaan meningkat, air tersebut memuai. Dalam hal ini volume air bertambah… Karena volume air bertambah, maka massa jenis alias kerapatan air berkurang (massa jenis = massa / volume). Dengan demikian, air yang ada di permukaan tidak bisa meluncur ke bawah karena kerapatannya lebih kecil. Semakin banyak kalor yang ditambahkan, semakin besar energi kinetik molekul-molekul air. Semakin besar energi kinetik, semakin besar laju molekul-molekul air. Molekul-molekul yang mempunyai laju yang besar akhirnya melepaskan diri dari gaya tarik antara molekul dan kabur menjadi uap. Setiap hari, molekul-molekul air yang lucu2 n imut2 itu meluncur bebas dari permukaan laut, permukaan danau, permukaan comberan ;) , permukaan kulit dkk dan bergabung dengan teman-temannya dalam pasukan uap air…

Berdasarkan penjelasan panjang pendek di atas, bisa dikatakan bahwa udara alias atmosfir pasti mengandung uap air… Oya, uap air tuh wujud gas dari air.

Tekanan Uap

Yang dimaksudkan dengan uap di sini adalah uap air. Juangan pake lupa ya… Untuk membantumu memahami pengertian tekanan uap, gurumuda pakai ilustrasi saja…

perubahan-wujud-penguapan-kelembaban-5

Tataplah gambar di atas dengan penuh kelembutan… sebuah wadah tertutup yang berisi air (anggap saja udara yang ada di dalam wadah sudah dikeluarkan)… Menurut teori kinetic, molekul-molekul air selalu bergerak ke sana ke mari. Ketika bergerak ke sana kemari, molekul-molekul air mempunyai kelajuan dan energi kinetic. Ingat ya, kelajuan setiap molekul berbeda-beda… Nah, molekul-molekul air yang mempunyai kelajuan dan energi kinetic yang cukup besar bisa melepaskan diri dari gaya tarik antara molekul air dan kabur menjadi uap… Proses yang sama terjadi pada molekul-molekul air yang ada dalam wadah di atas. Seiring bertambahnya waktu, semakin banyak molekul-molekul air yang bergabung dalam pasukan uap air (berubah wujud dari air menjadi uap). Karena wadah tertutup, maka molekul-molekul air yang telah berubah menjadi uap tidak bisa kabur menuju atmosfir (molekul-molekul tersebut terperangkap dalam wadah). Jumlah molekul-molekul air yang kabur menjadi uap cukup banyak, karenanya terdapat kemungkinan terjadinya tumbukan antara molekul-molekul dengan dinding wadah. Sebagian molekul-molekul yang menumbuk dinding wadah akan dipantulkan kembali menuju permukaan air dan bergabung lagi ke dalam pasukan air (berubah wujud dari uap menjadi air). Proses ini berulang secara terus menerus… Seiring bertambahnya waktu, semakin banyak molekul-molekul air yang kabur menjadi uap (berubah wujud dari cair menjadi uap). Pada saat yang sama, sebagian molekul yang menabrak dinding wadah akan berubah lagi menjadi air (berubah wujud dari uap menjadi cair)… Nah, apabila jumlah molekul-molekul yang berubah wujud dari cair menjadi uap sama dengan jumlah molekul-molekul yang berubah wujud dari uap menjadi cair, maka akan terjadi keseimbangan. Ketika terjadi keseimbangan, bagian atas wadah yang berisi uap dikatakan jenuh… Wah, bisa jenuh juga toh ;) Tekanan uap pada daerah yang jenuh dikenal dengan julukan Tekanan uap jenuh.

Catatan :

Perubahan wujud dari cair menjadi uap dikenal dengan julukan penguapan. Sedangkan perubahan wujud dari uap menjadi cair dikenal dengan julukan kondensasi

Perlu diketahui bahwa tekanan uap jenuh hanya bergantung pada suhu saja dan tidak bergantung pada volume. Apabila suhu air meningkat, maka energi kinetic molekul-molekul air tentu saja bertambah. Karena energi kinetic molekul-molekul air bertambah, maka kelajuan molekul-molekul air pasti meningkat. Dengan demikian, akan semakin banyak molekul-molekul yang mempunyai kelajuan tinggi yang kabur menjadi uap (berubah wujud dari cair menjadi uap). Karena volume wadah tetap, maka tekanan uap hanya bergantung pada jumlah molekul (N) dan kelajuan (v). Ingat lagi persamaan tekanan yang telah gurumuda oprek dalam pembahasan mengenai sifat makroskopis dan mikroskopis… neh persamaanya :

perubahan-wujud-penguapan-kelembaban-6

Semakin banyak molekul (N makin besar) yang kabur menjadi uap dan semakin tinggi kelajuan molekul-molekul tersebut (v makin besar), maka tekanan uap juga semakin meningkat… Dengan demikian, keseimbangan akan terjadi pada tekanan uap yang lebih tinggi. Karenanya tekanan uap jenuh juga semakin tinggi… Ingat ya, tekanan uap jenuh hanya ada ketika terjadi keseimbangan…

Berikut ini nilai tekanan uap jenuh air yang berubah terhadap suhu…

Suhu (oC) Tekanan Uap Jenuh Air (Pa = N/m2)
-10 0,26 x 103
0 0,611 x 103
10 1,23 x 103
20 2,33 x 103
30 4,24 x 103
40 7,37 x 103
50 12,3 x 103
60 19,9 x 103
70 31,2 x 103
80 47,3 x 103
90 70,1 x 103
100 101 x 103
120 199 x 103

Seperti yang telah gurumuda ulas sebelumnya, tekanan uap jenuh tidak bergantung pada volume. Tekanan uap bergantung pada volume, tetapi tekanan uap jenuh tidak bergantung pada volume. Seandainya volume wadah bertambah atau berkurang, pada suatu saat akan terjadi keseimbangan juga.

Ilustrasi panjang pendek di atas hanya mau menghantarmu untuk memahami tekanan uap jenuh yang terjadi pada atmosfir. Bedanya, dalam ilustrasi sebelumnya kita menganggap tidak ada udara dalam bagian wadah yang tidak berisi air. Karenanya bagian wadah yang tidak berisi air hanya ditempati oleh uap air. Sebaliknya, permukaan bumi di mana diriku dan dirimu berada selalu dipenuhi dengan udara. Karenanya, uap air tidak hidup sendirian tetapi selalu hidup berdampingan dengan gas lain. Tumbukan antara molekul-molekul uap dengan molekul-molekul gas lain hanya memperlama terjadinya keseimbangan. Walaupun demikian, pada suatu saat akan terjadi keseimbangan juga apabila jumlah molekul-molekul air yang berubah menjadi uap sama dengan jumlah molekul-molekul uap yang berubah menjadi air…

Pendidihan

Pendidihan sebenarnya merupakan proses perubahan wujud cair menjadi wujud gas. Pendidihan biasanya terjadi ketika tekanan uap jenuh sama dengan tekanan udara luar (tekanan udara luar = tekanan atmosfir). Btw, pada kesempatan ini kita hanya membahas pendidihan air saja…

Seperti yang telah gurumuda jelaskan sebelumnya, tekanan uap jenuh air berbanding lurus dengan suhu air. Semakin tinggi suhu air, semakin besar tekanan uap jenuh air… Nah, ketika kita memanaskan air, biasanya muncul gelembung-gelembung kecil pada bagian dasar wadah… Adanya gelembung-gelembung menandakan perubahan wujud cair menjadi wujud gas… apabila tekanan uap jenuh dalam gelembung lebih kecil dari tekanan udara luar, maka gelembung tersebut akan mengerut dan hancur sebelum tiba di permukaan. Gelembung hancur karena gaya dorong udara luar lebih besar daripada gaya dorong uap yang ada di dalam gelembung (ingat persamaan tekanan : P = F/A — F = PA). Tekanan udara luar lebih besar dari tekanan uap dalam gelembung, sehingga udara luar memiliki gaya yang lebih besar…

Seiring dengan kenaikan suhu air, tekanan uap jenuh dalam gelembung juga semakin bertambah… Apabila tekanan uap jenuh dalam gelembung sama atau lebih besar dari tekanan udara luar, maka gelembung akan bertambah besar dan mengapung sampai di permukaan… Setelah tiba di permukaan, gelembung akan pecah dan uap air yang ada di dalam gelembung pun kabur sesuka hatinya… Terjadilah proses pendidihan… perhatikan dua kalimat yang dicetak miring… gelembung bertambah besar karena gaya dorong uap yang ada di dalam gelembung lebih besar daripada gaya dorong udara luar (ingat persamaan tekanan : P = F/A — F = PA). Tekanan udara uap dalam gelembung lebih besar dari tekanan udara luar, sehingga uap yang ada di dalam gelembung memiliki gaya yang lebih besar… Ketika gelembung bertambah besar, volume uap juga bertambah besar. Akibatnya, kerapatan alias massa jenis uap menjadi berkurang… Karena kerapatan uap berkurang (kerapatan uap lebih kecil dari kerapatan air) maka gelembung bisa mengapung ke permukaan… mirip seperti kayu kering atau gabus yang mengapung di atas permukaan air… Kayu kering atau gabus bisa mengapung karena kerapatannya lebih kecil dari kerapatan air…

Berdasarkan uraian panjang pendek ini, kita bisa mengatakan bahwa proses pendidihan air terjadi ketika tekanan uap jenuh air sama atau lebih besar dari tekanan atmosfir… Dengan demikian, suhu titik didih air tentu saja sangat bergantung pada tekanan atmosfir… Semakin kecil tekanan atmosfir, semakin rendah suhu titik didih. Atau sebaliknya, semakin besar tekanan atmosfir, semakin tinggi suhu titik didih… Biasanya semakin tinggi suatu tempat di ukur dari permukaan laut, semakin kecil tekanan atomosfir di tempat tersebut. Karenanya bisa disimpulkan bahwa semakin tinggi suatu tempat di ukur dari permukaan laut, semakin rendah suhu titik didih di tempat tersebut. Suhu titik didih di puncak lebih rendah daripada suhu titik didih di pantai. Suhu titik didih di puncak gunung lebih rendah dari suhu titik didih di dataran rendah. Suhu titik didih di Bandung (dataran tinggi) lebih rendah dari suhu titik didih di Jakarta… dan sebagainya… Air yang dipanaskan di puncak gunung tentu saja lebih cepat mendidih daripada air yang dipanaskan di tepi pantai. Masalahnya sekarang, kalau dirimu memasak nasi dkk di puncak gunung, misalnya, dirimu bisa nunggu sampai puyeng ;) suhu titik didih rendah, karenanya nasinya juga lama sekali baru matang… Biasanya orang menggunakan pressure cooker (terjemahin sendiri ya :) ) untuk memasak nasi dkk di puncak gunung… pressure cooker biasanya menaikkan tekanan udara sehingga suhu titik didih menjadi lebih tinggi. Karena suhu yang lebih tinggi bisa dicapai maka nasi lebih cepat matang…

Kelembaban

Kelembaban sebenarnya menyatakan banyaknya kandungan uap air dalam udara… Ketika hujan turun, biasanya udara sangat lembab. Hal ini disebabkan karena kandungan uap air dalam udara sangat banyak. Sebaliknya, jika kandungan uap air dalam udara sangat sedikit atau nyaris tidak ada, biasanya udara sangat kering… Banyaknya kandungan uap air dalam udara sering dinyatakan dengan kelembaban relatif…

Kelembaban relative merupakan perbandingan tekanan parsial uap dengan tekanan uap jenuh air pada suhu tertentu (yang dimaksudkan dengan uap di sini adalah uap air). Biasanya kelembaban relatif dinyatakan dalam persen. Secara matematis dirumuskan sebagai berikut :

perubahan-wujud-penguapan-kelembaban-7

Ada sebuah istilah baru, yakni tekanan parsial. Tekanan parsial merupakan tekanan yang diberikan oleh setiap gas yang ada dalam udara. Ingat ya, udara sebenarnya terdiri dari berbagai jenis gas… ada nitrogen (78 %), oksigen (21 %), argon (0,90 %), karbondioksida, uap air dkk… Jumlah tekanan parsial dari setiap gas dalam udara disebut tekanan total (tekanan total = tekanan atmosfir = tekanan udara). Jika tidak ada kandungan uap air dalam udara, maka tekanan parsial uap air = 0. Sebaliknya, tekanan parsial uap air bernilai maksimum jika tekanan parsial uap air = tekanan uap jenuh air. Tekanan uap jenuh air bergantung pada suhu (lihat table di atas).

Apabila tekanan parsial uap air = tekanan uap jenuh (kelembaban relatif = 100 %), maka udara menjadi jenuh dengan uap air… Pada saat udara menjadi jenuh dengan uap air, kandungan uap air dalam udara hampir mencapai nilai maksimum… Apabila tekanan parsial uap air > tekanan uap jenuh (kelembaban relatif > 100%), maka udara menjadi superjenuh… Pada saat udara menjadi super jenuh, udara sudah tidak mampu menahan kandungan uap air… Karena udara sudah tidak mampu menahan kandungan uap air maka kelebihan uap air akan berkondensasi menjadi air (baca : embun)… Suhu di mana uap air berkondensasi menjadi embun dikenal dengan julukan suhu titik embun…



Kapasitas kalor molekul gas, Ekipartisi energi, Energi dalam gas ideal


Pada pembahasan mengenai kalor, kapasitas kalor dan kalor jenis (materi suhu dan kalor), gurumuda sudah membahas konsep kalor dan kapasitas kalor suatu benda. Kalor merupakan energi yang berpindah akibat adanya perbedaan suhu. Sedangkan kapasitas kalor merupakan banyaknya kalor yang diberikan pada sebuah benda, untuk menaikkan suhu seluruh benda sebesar satu derajat. Karena kalor merupakan energi yang berpindah, maka kita bisa mendefinisikan kapasitas kalor sebagai banyaknya energi dalam bentuk kalor yang diberikan pada sebuah benda, untuk menaikkan suhu seluruh benda sebesar satu derajat. Dari definisi singkat ini, tampak bahwa kapasitas kalor benda berkaitan erat dengan energi dan suhu benda. Btw, sampai di sini dirimu belum pusink-pusink khan ? :(

Pada pembahasan sebelumnya (Hubungan antara sifat makroskopis dan mikroskopis gas), gurumuda sudah menjelaskan secara panjang lebar mengenai hubungan antara energi kinetik (EK) translasi rata-rata dari molekul-molekul gas ideal dengan suhu mutlak gas ideal. Hubungan tersebut dinyatakan dalam salah satu persamaan berikut : EK translasi rata-rata = 3/2 nRT. Dari persamaan ini, tampak bahwa EK translasi rata-rata dari molekul-molekul gas ideal berkaitan erat dengan suhu mutlak gas ideal (T). Dari hasil ini, kita memperoleh informasi berharga mengenai kapasitas kalor gas ideal (bandingkan dengan penjelasan mengenai kapasitas kalor di atas).

Sebelum mengulas kapasitas kalor molekul gas ideal, terlebih dahulu kita bahas kembali energi kinetik translasi rata-rata molekul-molekul gas ideal dan kapasitas kalor. Setelah meninjau hubungan antara dua hal ini, selanjutnya kita akan menurunkan persamaan yang menyatakan kapasitas kalor molekul gas ideal.

EK TRANSLASI RATA-RATA MOLEKUL-MOLEKUL GAS IDEAL

Pada bagian pengantar tulisan ini gurumuda sudah menceritakan secara tidak singkat mengenai hubungan antara energi kinetik (EK) translasi molekul-molekul gas ideal dan suhu mutlak gas ideal. Hubungan mesra antara EK translasi molekul gas dan suhu mutlak gas ideal dinyatakan melalui dua persamaan di bawah :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-1

Keterangan :

EK rata2 = Energi kinetik translasi rata-rata dari molekul-molekul gas ideal (Kgm2/s2 = J)

k = Konstanta Boltzmann (k = 1,38 x 10-23 J/K)

T = Suhu mutlak (K)

n = jumlah mol (mol)

R = konstanta gas universal (R = 8,315 J/mol.K)

(J = Joule, kJ = kilo Joule, K = Kelvin)

Perlu diketahui bahwa hubungan ini kita peroleh melalui penurunan matematis (pake hitung-hitungan), yang didasarkan pada teori kinetik gas. Dalam teori kinetik gas, kita menggambarkan molekul gas ideal sebagai partikel alias titik. Karena dianggap sebagai partikel alias titik, maka molekul-molekul gas ideal juga hanya bisa melakukan gerak translasi saja… Karena hanya bisa melakukan gerak translasi maka molekul-molekul tersebut juga hanya mempunyai energi kinetik translasi… Karenanya jangan pake heran kalau persamaan di atas dinyatakan dalam bentuk energi kinetik translasi, bukan energi kinetik rotasi dkk…

Sekarang mari kita beralih ke kapasitas kalor….

KALOR JENIS (c – huruf c kecil)

Kalor jenis (c) = banyaknya kalor (Q) yang dibutuhkan untuk menaikkan suhu (T) satu satuan massa (m) benda sebesar satu derajat. Secara matematis, kalor jenis dinyatakan melalui persamaan di bawah :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-2

Keterangan :

c = kalor jenis

Q = kalor (J)

m = massa benda (Kg)

delta T = perubahan suhu = suhu akhir (T2) – suhu awal (T1). Satuannya K

(J = Joule, K = Kelvin)

Satuan kalor jenis benda (c)

Kita bisa menurunkan satuan Kalor Jenis dengan mengoprek persamaan kalor jenis :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-3

Satuan Sistem Internasional untuk kalor jenis benda adalah J/Kg.K

KAPASITAS KALOR BENDA (C – huruf C besar)

Kapasitas kalor (C) = banyaknya kalor yang dibutuhkan untuk menaikkan suhu seluruh benda sebesar satu derajat. Dengan demikian, benda yang mempunyai massa m dan kalor jenis c mempunyai kapasitas kalor sebesar :

C = mc

Keterangan :

C = kapasitas kalor

m = massa benda (Kg)

c = kalor jenis (J/Kg.K)

Satuan kapasitas kalor benda (C)

Untuk menurunkan satuan kapasitas kalor (C), kita oprek saja persamaan kapasitas kalor (C) di atas :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-4

Satuan Sistem Internasional untuk kapasitas kalor benda = J/K (J = Joule, K = Kelvin)

KALOR alias panas (Q)

Kalor merupakan energi yang berpindah akibat adanya perbedaan suhu. Ketika kita menyentuhkan dua benda yang suhunya berbeda, kalor akan mengalir dari benda yang suhunya lebih tinggi menuju benda yang memiliki suhu yang lebih rendah… Kalor akan berhenti mengalir jika kedua benda telah mencapai suhu yang sama. Mengenai kalor dkk selengkapnya bisa dipelajari di pembahasan mengenai kalor, kapasitas kalor, kalor jenis (materi suhu dan kalor). Kita bisa menurunkan persamaan kalor (Q) menggunakan persamaan kalor jenis (c) yang telah dioprek sebelumnya :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-5

Ini adalah persamaan kalor yang dinyatakan dalam massa benda (m).

Keterangan :

Q = kalor (J)

m = massa benda (Kg)

c = kalor jenis benda (J/Kg K)

delta T = perubahan suhu (K)

Persamaan kalor yang sudah diturunkan di atas (persamaan 1) bisa dinyatakan dalam massa molekul (M). Sebelum mengoprek persamaannya, baca terlebih dahulu pesan-pesan berikut ini…

Dalam pembahasan mengenai hukum gas ideal (materi teori kinetik gas), gurumuda sudah memperkenalkan kepadamu dua istilah baru, yakni jumlah mol (n) dan massa molekul alias massa molar (M). Jumlah mol (n) = perbandingan massa (m) suatu benda dengan massa molekulnya (M). Secara matematis bisa ditulis seperti ini :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-6

Sekarang kita masukan persamaan b ke dalam persamaan kalor yang dinyatakan dalam massa benda (persamaan 1) :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-7

Ini adalah persamaan kalor yang dinyatakan dalam massa molekul (M)

Keterangan :

n = jumlah mol (mol)

M = massa molekul (Kg/mol)

c = kalor jenis (J/Kg.K)

delta T = perubahan suhu (K)

KAPASITAS KALOR MOLEKUL (C)

Hasil kali antara massa molekul (M) dan kalor jenis (c) pada persamaan 2 dikenal dengan julukan kapasitas kalor molekul (C). Secara matematis, persamaan kapasitas kalor molekul bisa ditulis seperti ini :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-8

Keterangan :

C = kapasitas kalor molekul (C)

M = massa molekul (Kg/mol)

c = kalor jenis (J/Kg.K)

n = jumlah mol (mol)

Satuan kapasitas kalor molekul

Satuan kapasitas kalor molekul bisa diperoleh dengan mengoprek persamaan kapasitas kalor molekul :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-9

Satuan Sistem Internasional untuk kapasitas kalor molekul = J/mol.K (J = Joule, K = Kelvin)

Karena massa molekul (M) x kalor jenis (c) = kapasitas kalor molekul (C), maka persamaan kalor yang dinyatakan dalam massa molekul (persamaan 2) bisa dioprek menjadi seperti ini :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-10

Ini adalah persamaan kalor yang dinyatakan dalam kapasitas kalor molekul….

Keterangan :

Q = kalor (J)

n = jumlah mol (mol)

C = kapasitas kalor molekul (J/mol.K)

Sekarang, mari kita obok-obok kapasitas kalor molekul gas ideal…

KAPASITAS KALOR MOLEKUL GAS IDEAL

Kalau kita bandingkan persamaan EK translasi rata-rata dari molekul-molekul gas ideal dan persamaan kalor yang dinyatakan dalam kapasitas kalor molekul, kita bisa melihat adanya keterkaitan erat… gurumuda tulis lagi kedua persamaan tersebut :

Persamaan EK translasi rata-rata molekul gas ideal :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-11

Dari persamaan 1, tampak bahwa EK translasi rata-rata dari molekul gas ideal berbanding lurus dengan suhu mutlak gas ideal (T). Apabila EK translasi molekul-molekul gas ideal bertambah, maka suhu mutlak gas ideal juga bertambah. Demikian juga sebaliknya, jika EK translasi rata-rata molekul-molekul gas ideal berkurang, maka suhu mutlak gas ideal juga berkurang… Dari persamaan 2, tampak bahwa kalor (Q) berbanding lurus dengan perubahan suhu (T). Karena kalor merupakan energi yang berpindah akibat adanya perbedaan suhu, maka kita bisa mengatakan bahwa perubahan suhu yang dialami oleh suatu benda disebabkan oleh adanya perubahan energi molekul-molekul penyusun benda tersebut.

Berdasarkan uraian singkat ini, kita bisa melihat adanya kesetaraan antara EK translasi molekul gas ideal (persamaan 1) dan kalor (persamaan 2). Dengan demikian, kita bisa menurunkan persamaan yang menyatakan kapasitas kalor molekul gas ideal. Kita kawinkan saja ;) kedua persamaan di atas :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-12

Sebelum kita tertawa terpingkal-pingkal karena telah menemukan nilai kapasitas kalor gas ideal, alangkah baiknya jika kita selidiki apakah nilai kapasitas kalor gas ideal ini valid atau tidak. Caranya mudah :

Pertama, periksa saja satuannya… satuan kapasitas kalor molekul (C) = J/mol.K. wow, menakjubkan…. ternyata satuannya sama. Berarti untuk sementara, persamaan kapasitas kalor gas ideal valid. Ssttt…. Jangan menarik kesimpulan dulu sebelum membaca pesan-pesan berikut.

Kedua, membandingkan nilai kapasitas kalor molekul gas ideal dengan kapasitas kalor molekul gas riil yang diperoleh melalui pengukuran. Perlu diketahui bahwa nilai kapasitas kalor gas ideal di atas diperoleh secara teoritis (pake hitung-hitungan), yang didasarkan pada teori kinetik gas. Dalam teori kinetik gas, kita menganggap gas sebagai gas ideal alias gas sempurna. Karenanya, alangkah baiknya jika kita bandingkan nilai kapasitas kalor molekul gas ideal hasil oprekan kita dengan kapasitas kalor molekul gas riil alias gas nyata yang diperoleh melalui eksperimen.

Berikut ini beberapa nilai kapasitas kalor molekul gas riil yang diperoleh melalui eksperimen.

Jenis Gas Gas Cv (J/mol.K)
Monoatomik He 12,47

Ar 12,47
Diatomik H2 20,42

N2 20,76

O2 21,10

CO 20,85
Poliatomik CO2 28,46

SO2 31,39

H2S 25,95

Catatan :

Pertama, CV = kapasitas kalor molekul gas pada volume tetap (volume tetap di sini berkaitan dengan cara yang dipakai untuk mengetahui kapasitas kalor molekul gas riil. Jadi sejumlah gas dimasukkan ke dalam wadah tertutup dan volume wadah dijaga agar selalu tetap/konstan. Ketika gas mendapat tambahan kalor, suhu gas pasti meningkat. Ketika suhu gas meningkat, gas yang ada dalam wadah pasti memuai. Biasanya kalau gas memuai, volumenya pasti bertambah. Btw, karena si gas terperangkap dalam wadah yang volumenya selalu konstan, maka volume gas juga selalu konstan alias tidak bisa berubah. Dengan demikian perubahan suhu gas akibat adanya tambahan kalor bisa diukur secara akurat)

Kedua, gas monoatomik = gas yang terdiri dari satu atom (He, Ar). Gas diatomik = gas yang terdiri dari dua atom (H2 : terdiri dari 2 atom H, N2 : terdiri dari 2 atom N, O2 : terdiri dari dua atom O, CO : terdiri dari 1 atom C dan 1 atom O). Gas poliatomik = gas yang terdiri dari banyak atom (CO2 : terdiri dari 1 atom C dan 2 atom O, SO2 : terdiri dari 1 atom S dan 2 atom O, H2S : terdiri dari 2 atom H dan 1 atom S). Gas monoatomik, gas diatomik dan gas poliatomik merupakan gas riil alias gas yang ada dalam kehidupan kita sehari-hari…

Sekarang perhatikan tabel di atas…. Tampak bahwa kapasitas kalor molekul gas ideal yang diperoleh secara teoritis (12,47 J/Kg.K) hanya cocok dengan kapasitas kalor molekul gas monoatomik saja. Kapasitas kalor molekul gas diatomik dan poliatomik malah lebih besar dari 12,47 J/Kg.K. Berdasarkan kenyataan ini, kita bisa menyimpulkan beberapa hal :

Pertama, karena kapasitas kalor molekul gas monoatomik = kapasitas kalor molekul gas ideal yang diperoleh secara teoritis (12,47 J/Kg.K), maka kita bisa mengatakan bahwa molekul gas monoatomik memiliki kemiripan sifat dengan molekul gas ideal. Dalam teori kinetik gas, kita menanggap molekul gas ideal sebagai partikel alias titik. Karena dianggap sebagai partikel, maka molekul gas ideal hanya bisa melakukan gerak translasi. Karena hanya bisa melakukan gerak translasi, maka molekul gas ideal hanya mempunyai energi kinetik translasi saja… Nah, karena molekul gas monoatomik mempunyai kemiripan sifat dengan molekul gas ideal, maka kita bisa menganggap molekul gas monoatomik sebagai partikel alias titik. Karenanya molekul gas poliatomik hanya melakukan gerak translasi saja. Karena hanya melakukan gerak translasi maka molekul gas monoatomik hanya mempunyai energi kinetik translasi…

Kedua, karena kapasitas kalor molekul gas diatomik dan gas poliatomik lebih besar dari kapasitas kalor molekul gas ideal yang diperoleh secara teoritis (>12,47 J/Kg.K) maka kita bisa mengatakan bahwa selain memiliki energi kinetik translasi, molekul gas diatomik dan poliatomik juga mempunyai energi kinetik jenis lain. Dengan demikian molekul gas diatomik dan poliatomik otomatis tidak hanya melakukan gerak translasi saja, tetapi juga melakukan gerak lain. Berdasarkan kenyataan ini, molekul gas diatomik dan poliatomik tidak bisa dianggap sebagai partikel alias titik. Ingat ya, partikel alias titik hanya bisa melakukan gerak translasi saja… Untuk mengatasi persoalan ini, kita bisa menganggap molekul gas diatomik sebagai dua titik (dua titik ini bisa dianggap seperti dua bola kecil yang elastis). Kedua bola elastis ini seolah-olah dihubungkan oleh sebuah “pegas”. Biar paham, tataplah gambar di bawah dengan penuh kelembutan…

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-13

Sebaliknya, molekul gas poliatomik bisa dianggap sebagai beberapa titik (beberapa titik ini bisa dianggap seperti beberapa bola kecil yang elastis). Bola-bola elastis tersebut seolah-olah dihubungkan oleh beberapa “pegas”.

Dengan adanya pemahaman yang baru mengenai struktur dalam molekul gas diatomik dan poliatomik, kita bisa menjelaskan jenis-jenis gerakan lain yang dilakukan oleh molekul-molekul tersebut. Jadi selain melakukan gerak translasi, molekul gas diatomik dan poliatomik juga melakukan gerak rotasi. Tataplah gambar di bawah… (molekul gas diatomik yang berotasi)

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-14

Selain melakukan gerak translasi dan rotasi, molekul-molekul gas diatomik dan poliatomik juga melakukan gerak vibrasi. Tataplah gambar di bawah… (molekul gas diatomik yang bergetar)

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-15

Ketika melakukan gerak vibrasi, “pegas” dan atom-atom penyusun molekul gas diatomik dan poliatomik mempunyai energi kinetik dan energi potensial elastis. Ingat lagi pembahasan mengenai getaran pegas…

Catatan :

Pengertian energi kinetik dan energi kinetik translasi sedikit berbeda. Energi kinetik hanya berkaitan dengan gerak lurus saja, sedangkan energi kinetik translasi berkaitan dengan gerak translasi (gerak translasi bisa berupa gerak lurus, gerak parabola, gerakan acak dll)

Persoalan sekarang, kapasitas kalor molekul gas yang sudah kita turunkan secara teoritis berdasarkan teori kinetik gas (C = 3/2 R = 12,47 J/Kg.K) hanya berkaitan dengan energi kinetik translasi saja. Bagaimanapun, molekul gas diatomik dan poliatomik tidak hanya mempunyai energi kinetik translasi, tetapi juga mempunyai energi kinetik rotasi dkk… Bagaimanakah kita menghitung besarnya kapasitas kalor yang berkaitan dengan energi kinetik rotasi dkk ?

EKIPARTISI ENERGI

Persoalan kita di atas bisa dijelaskan menggunakan teorema ekipartisi energi. Teorema ekipartisi energi diturunkan secara teoritis oleh om Clerk Maxwell, menggunakan mekanika statistik. Kira’in om guru ;) Disebut teorema karena tidak ada pembuktian melalui eksperimen. Mengenai mekanika statistik, nanti baru kita oprek… gurumuda tertarik juga, jadi tunggu saja tanggal mainnya… oya, ekipartisi energi artinya pembagian energi secara merata… (partisi = membagi). Ini terjemahan kasar saja. Terjemahan halusnya cari sendiri ya…

Biar dirimu lebih paham, gurumuda tulis lagi persamaan yang menyatakan hubungan antara EK translasi dan suhu mutlak gas ideal…

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-16

Keterangan :

EK rata2 = Energi Kinetik translasi rata-rata molekul gas ideal

k = Konstanta Boltzmann (k = 1,38 x 10-23 J/K)

T = Suhu alias temperatur mutlak molekul gas ideal (K)

Proses penurunan persamaan ini sudah dijelaskan pada pembahasan sebelumnya (hubungan antara sifat makroskopis dan mikroskopis gas). Energi kinetik translasi diturunkan dari gerak translasi yang mempunyai tiga komponen kecepatan, yakni komponen kecepatan pada sumbu x, sumbu y dan sumbu z. Adanya 3 komponen kecepatan ini yang menyebabkan ada angka 3 pada persamaan di atas. Setiap komponen kecepatan disebut derajat kebebasan. Karena mempunyai 3 komponen kecepatan maka energi kinetik translasi memiliki 3 derajat kebebasan. Pake istilah yang aneh-aneh saja… ;)

Teorema ekipartisi energi menyatakan bahwa energi yang ada harus terbagi secara merata pada semua derajat kebebasan. Dengan demikian, besarnya energi rata-rata untuk setiap derajat kebebasan adalah ½ kT.

Molekul gas monoatomik

Molekul gas monoatomik hanya melakukan gerak translasi saja. Karena hanya melakukan gerak translasi saja, maka molekul gas monoatomik mempunyai 3 derajat kebebasan.

Energi kinetik rata-rata untuk setiap molekul gas monoatomik adalah :

3 (½ kT) = 3/2 kT = 3/2 nRT.

Kapasitas kalor molekul gas monoatomik :

C = 3/2 R = 3/2 (8,315 J/mol.K) = 12,47 J/Kg.K

Molekul gas diatomik

Selain melakukan gerak translasi, molekul gas diatomik juga melakukan gerak rotasi dan vibrasi. Jumlah derajat kebebasan untuk gerak translasi = 3. Jumlah derajat kesengsaraan untuk gerak rotasi dan vibrasi berapakah ? ;) kita oprek dulu… tataplah gambar di bawah dengan penuh kebebasan…

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-17

Terdapat tiga sumbu rotasi, yakni sumbu x, y dan z. Gerak rotasi pada sumbu x tidak masuk dalam hitungan karena kedua atom yang membentuk molekul berhimpit dengan sumbu rotasi. Ingat ya, atom dianggap sebagai partikel alias titik. Ketika berhimpit dengan sumbu x, momen inersia kedua atom = 0. Dengan demikian, jumlah derajat kebebasan untuk gerak rotasi = 2.

Energi rata-rata untuk setiap molekul gas diatomik adalah :

3(½ kT) + 2(½ kT) = 5/2 kT = 5/2 nRT.

Kapasitas kalor molekul gas diatomik :

C = 5/2 R = 5/2 (8,315 J/mol.K) = 20,79 J/Kg.K

Pending sebentar… Silahkan bandingkan dengan kapasitas kalor molekul gas diatomik yang diperoleh melalui eksperimen… tuh jauh di atas (lihat tabel). nilainya hampir sama… kapasitas kalor molekul yang diperoleh secara teoritis sedikit lebih besar dibandingkan dengan kapasitas kalor molekul gas diatomik yang dipeoleh melalui eksperimen (tabel). Btw, perbedaannya sangat kecil… Sekarang coba kita tinjau gerak vibrasi…

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-18

Ketika melakukan gerak vibrasi, molekul gas diatomik mempunyai 2 jenis energi, yakni energi kinetik dan energi potensial elastis. Dengan demikian, jumlah derajat kebebasan untuk gerak vibrasi = 2.

Energi rata-rata untuk setiap molekul gas diatomik adalah :

3(½ kT) + 2(½ kT) + 2(½ kT) = 7/2 kT = 7/2 nRT.

Kapasitas kalor molekul gas diatomik :

C = 7/2 R = 7/2 (8,315 J/mol.K) = 29,1 J/Kg.K

Silahkan bandingkan hasil ini dengan kapasitas kalor molekul gas diatomik yang diperoleh melalui eksperimen (lihat tabel nun jauh di atas)… Perbedaannya sangat besar… kok bisa ya ? molekul gas diatomik memiliki 7 derajat kebebasan (gerak translasi, rotasi dan vibrasi), karenanya nilai kapasitas kalor molekul gas diatomik yang diperoleh melalui eksperimen seharusnya berkisar pada 29,1 J/Kg.J.

Ternyata pengaruh gerak vibrasi terhadap nilai kapasitas kalor molekul gas diatomik tergantung pada jangkauan suhu (T) juga. Eksperimen yang telah dilakukan sebelumnya terjadi pada jangkauan suhu yang tidak terlalu lebar. Eksperimen terbaru yang dilakukan pada jangkauan suhu yang lebar memperlihatkan bahwa nilai kapasitas kalor molekul gas bergantung juga pada jangkauan suhu. Agar lebih memahami persoalan ini, mari kita tinjau variasi kapasitas kalor molekul gas hidrogen pada setiap suhu yang berbeda…

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-19

Hidrogen (H2) termasuk gas diatomik. Gambar di atas menunjukkan variasi kapasitas kalor molekul gas hidrogen pada suhu alias temperatur yang berbeda. Nilai kapasitas kalor molekul sebesar 5/2 R = 20,79 J/Kg.K hanya berada dalam jangkauan temperatur sekitar 250 K sampai 750 K. Di bawah 250 K, kapasitas kalor molekul gas hidrogen berkurang secara teratur hingga mencapai 3/2 R = 12,47 J/Kg.K. Sebaliknya di atas 750 K, kapasitas kalor molekul gas bertambah secara teratur hingga mencapai 7/2 R = 29,1 J/Kg.K.

Berdasarkan kenyataan ini, kita bisa mengatakan bahwa pada suhu rendah, molekul-molekul gas hanya melakukan gerak translasi saja. Setelah suhu meningkat, molekul-molekul gas baru melakukan gerak rotasi. Pada suhu yang tinggi, molekul-molekul gas saling bertumbukan sehingga atom-atom penyusun molekul tersebut melakukan gerak vibrasi. Jadi ketiga jenis gerak ini dilakukan secara bertahap, pertama cuma gerak translasi (suhu rendah), setelah itu translasi + rotasi (suhu sedang) dan yang terakhir translasi + rotasi + vibrasi (suhu tinggi)… Gerak vibrasi hanya terjadi jika molekul-molekul gas saling bertumbukkan.

Kasus seperti ini tidak hanya terjadi pada gas hidrogen saja tetapi gas lain juga. Dari eksperimen yang dilakukan oleh om-om ilmuwan, kapasitas kalor molekul gas lain juga cenderung berubah terhadap temperatur. Perubahan yang terjadi mirip seperti yang dialami oleh gas hidrogen, tapi karena struktur dalam setiap gas berbeda (jumlah dan jenis atom penyusunnya beda), maka perubahan kapasitas kalor juga terjadi pada jangkauan suhu yang berbeda…

Apa yang ditemukan ini bisa menjelaskan permasalahan kita di atas. Btw, hal ini melanggar teorema ekipartisi energi dan teori kinetik gas. Teorema ekipartisi energi mengatakan bahwa energi total harus terbagi secara merata untuk setiap derajat kebebasan. Kenyataannya, tambahan energi yang diperoleh molekul gas tidak dibagi secara merata untuk setiap derajat kebebasan, tetapi dibagi secara bertahap. Di samping itu, persamaan kapasitas kalor molekul gas yang telah kita turunkan secara teoritis berdasarkan teori kinetik gas, menyatakan bahwa kapasitas kalor molekul hanya bergantung pada R saja (1/2 R untuk setiap derajat kebebasan). Kenyataannya, kapasitas kalor molekul dipengaruhi juga oleh suhu (T)…

Akhirnya, tibalah kita pada kesimpulan yang menarik… Pertama, teorema ekipartisi energi diturunkan dari mekanika statistik klasik, yang didasarkan pada hukum-hukum mekanika Newton. Kedua, teori kinetik gas yang kita gunakan dalam menjelaskan gerakan molekul-molekul gas, juga didasarkan pada hukum-hukum mekanika newton. Nah, karena teorema ekipartisi energi dan teori kinetik gas telah dilanggar, maka kita bisa menyimpulkan bahwa hukum-hukum mekanika newton tidak mampu menjelaskan gerakan yang terjadi pada level atom atau molekul. Dengan kata lain, mekanika Newton alias mekanika klasik hanya bisa menjelaskan gerakan materi yang berukuran besar. Untuk materi yang ukurannya sangat kecil seperti atom atau molekul, mekanika Newton sudah tidak berlaku lagi… Penggantinya adalah mekanika kuantum. Tunggu tanggal mainnya ;)

Energi Dalam gas ideal dan gas riil

Sebelumnya kita sudah berkenalan dengan energi kinetik translasi, energi kinetik rotasi dan energi kinetik vibrasi. Kali ini gurumuda ingin memperkenalkan kepada dirimu sebuah istilah yang aneh ;) , yakni energi dalam (U). Terlebih dahulu kita oprek energi dalam gas ideal.

Catatan :

Gas monoatomik = gas yang terdiri dari molekul-molekul monoatomik. Gas diatomik = gas yang terdiri dari molekul-molekul diatomik. Gas poliatomik = gas yang terdiri dari molekul-molekul poliatomik. Molekul monoatomik (terdiri dari satu atom) hanya bisa melakukan gerak translasi saja. Karena hanya melakukan gerak translasi saja, maka molekul monoatomik hanya mempunyai energi kinetik translasi. Temannya molekul monoatomik adalah molekul diatomik (terdiri dari dua atom) dan molekul poliatomik (terdiri dari banyak atom). Selain melakukan gerak translasi, molekul diatomik dan molekul poliatomik juga bisa melakukan gerak rotasi dan vibrasi…

Energi dalam gas ideal monoatomik

Energi dalam gas ideal monoatomik merupakan jumlah total energi kinetik translasi molekul-molekul gas ideal monoatomik. Jumlah total energi kinetik translasi molekul-molekul gas ideal = hasil kali antara energi kinetik translasi rata-rata setiap molekul dengan jumlah molekul (N). Secara matematis bisa ditulis seperti ini :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-20

Coba oprek kedua persamaan ini, untuk membuktikan apakah kedua persamaan ini sama atau tidak (cek satuannya)

Keterangan :

U = Energi dalam gas ideal monoatomik (J)

N = Jumlah molekul

k = Konstanta Boltzmann (k = 1,38 x 10-23 J/K)

T = Suhu mutlak (K)

n = Jumlah mol (mol)

R = Konstanta gas universal (R = 8,315 J/mol.K = 8315 kJ/kmol.K)

Energi dalam gas ideal diatomik

Energi dalam gas ideal diatomik merupakan jumlah total energi kinetik translasi, energi kinetik rotasi dan energi kinetik vibrasi molekul-molekul gas ideal diatomik. Sesuai dengan prinsip ekipartisi energi, energi dalam gas ideal diatomik adalah :

kapasitas-kalor-ekipartisi-energi-energi-dalam-gas-ideal-21

Energi dalam gas ideal poliatomik

Energi dalam gas ideal poliatomik merupakan jumlah total energi kinetik translasi, energi kinetik rotasi dan energi kinetik vibrasi molekul-molekul gas ideal poliatomik. Sesuai dengan prinsip ekipartisi energi, energi dalam gas ideal poliatomik adalah :

Catatan :

Energi dalam gas ideal hanya bergantung pada suhu alias temperatur saja (bandingkan dengan persamaan energi dalam gas ideal di atas)…

Energi dalam gas riil

Energi dalam gas riil bergantung juga pada suhu alias temperatur. Btw, ketika tekanan gas riil cukup besar (volume gas riil kecil), gas riil mulai menunjukkan perilaku menyimpang. Karenanya, bisa dikatakan bahwa energi dalam gas riil bergantung juga pada tekanan dan volume…



Persamaan Keadaan van der Walls


Wah, apalagi ini… Baru baca judulnya langsung mumet ;) kali ini topiknya agak garing jadi kita serius dulu ya, kawan ya… jangan langsung kabur gitu dunk. Persamaan keadaan = persamaan yang menyatakan keadaan alias kondisi gas, seperti suhu, tekanan, volume dan massa gas. Van der walls bukan sejenis stom walls tapi nama seorang fisikawan Belanda, J. D. van der Waals (1837-1923). Persamaan keadaan van der Waals sebenarnya merupakan persamaan keadaan gas, mirip seperti persamaan keadaan gas ideal. Bedanya, persamaan gas ideal tidak bisa memberikan hasil yang akurat apabila tekanan dan massa jenis alias kerapatan gas riil cukup besar. Sedangkan persamaan keadaan van der Waals bisa memberikan hasil yang lebih akurat.

Adanya persamaan ini berawal dari keprihatinan om Waals akan keterbatasan persamaan keadaan gas ideal. Karena pingin mengabadikan namanya dalam ilmu fisika ;) maka om waals memodifikasi persamaan keadaan gas ideal, dengan menambahkan beberapa faktor yang turut mempengaruhi kondisi gas riil, ketika tekanan dan massa jenis gas riil cukup besar.

Catatan :

Tekanan gas biasanya berbanding terbalik dengan volume. Apabila tekanan gas bertambah, maka volume gas berkurang. Atau sebaliknya, jika volume gas berkurang maka tekanan gas bertambah. Ketika volume gas berkurang, kerapatan gas biasanya bertambah (kerapatan = massa jenis = massa/Volume). Bisa dikatakan bahwa tekanan berbanding lurus dengan kerapatan. Kalau tekanan gas besar, maka kerapatan gas juga besar. Sebaliknya, kalau tekanan gas kecil, maka kerapatan gas juga kecil. Tekanan gas juga berbanding lurus dengan suhu. Ingat lagi pembahasan mengenai hukum-hukum gas. Jika tekanan gas bertambah, suhu gas meningkat. Kita bisa menyimpulkan bahwa apabila tekanan gas bertambah, maka suhu dan kerapatan gas ikut2an bertambah, sedangkan volume gas berkurang.

Ketika volume gas berkurang, jarak antara molekul menjadi lebih dekat. Untuk memudahkan pemahamanmu, perhatikan gambar di bawah. Titik hitam mewakili molekul. Gambar ini disederhanakan menjadi dua dimensi. Anggap saja ini gambar 3 dimensi… volume kotak = panjang x lebar x tinggi. Volume kotak bisa dianggap sebagai volume gas. Btw, ini cuma ilustrasi saja… Dalam kenyataannya, molekul-molekul gas tidak diam seperti titik dalam kotak di bawah. Molekul-molekul gas selalu bergerak…

persamaan-van-der-waals-a

Jarak antara molekul dalam kotak bervolume besar cukup jauh (gambar kiri). Sebaliknya jarak antara molekul dalam kotak bervolume kecil (gambar kanan) cukup dekat. Pada saat jarak antara molekul menjadi lebih dekat, molekul-molekul tersebut saling tarik menarik. Mirip seperti ketika dirimu mendekatkan sepotong besi pada magnet. Kalau jarak antara magnet dan besi cukup jauh, magnet tidak bisa menarik besi. Tapi kalau jarak antara magnet dan besi dekat, si besi langsung ditarik semakin dekat. Ini cuma ilustrasi saja… dirimu jangan membayangkan molekul seperti magnet dan besi. Kalau magnet dan besi saling nempel, molekul tidak saling nempel ;) Kasusnya beda… Ketika molekul-molekul hendak berciuman, elektron-elektron yang berada pada bagian luar molekul saling tolak menolak (gaya tolak elektris). Akibatnya, molekul-molekul tidak bisa saling nempel… Dari uraian singkat ini, bisa dikatakan gaya tarik menarik antara molekul turut mempengaruhi kondisi gas. Karenanya gaya tarik menarik antara molekul perlu diperhitungkan juga…

Di samping itu, pada saat tekanan gas cukup besar sehingga volume gas menjadi kecil, jarak antara molekul-molekul menjadi lebih dekat. Dalam hal ini, molekul-molekul memenuhi hampir seluruh volume gas. Karena molekul-molekul juga mempunyai ukuran (diameter atom = 10-10 m) maka kita juga perlu memperhitungkan volume molekul-molekul tersebut…

Karena merasa prihatin dengan keterbatasan persamaan keadaan gas ideal (PV = nRT), om van der Waals menurunkan sebuah persamaan keadaan, dengan memperhitungkan volume molekul dan interaksi yang terjadi antara molekul-molekul. Persamaan yang diturunkan oleh om van der Waals merupakan hasil modifikasi persamaan keadaan gas ideal PV = nRT.

persamaan-van-der-waals-b

Keterangan :

P = Tekanan gas (N/m2 = Pa)

V = Volume gas (m3)

R = Konstanta gas universal (R = 8,315 J/mol.K = 8315 kJ/kmol.K)

T = Suhu alias temperatur (K)

a = Konstanta empiris (nilainya bergantung pada gaya tarik menarik antara molekul gas)

b = konstanta empiris (mewakili volume satu mol molekul gas)

n = Jumlah mol (mol)

bn = Volume total dari molekul-molekul gas

Konstanta a dan b diperoleh melalui eksperimen. Nilai konstanta a dan b bergantung pada jenis gas.

n2/V2 = perbandingan kuadrat jumlah mol (n) dengan kuadrat volume gas (V). Nilai n2/V2 bergantung pada tekanan dan kerapatan gas. Apabila tekanan gas (P) besar, maka volume gas (V) menjadi kecil. Semakin kecil V, semakin besar n2/V2… Ketika volume gas kecil (n2/V2 besar) maka jarak antara molekul menjadi lebih dekat…. Semakin dekat jarak antara molekul, semakin besar kemungkinan terjadi interaksi antara molekul-molekul tersebut (bertumbukan, saling tarik menarik). Karenanya n2/V2 berbanding lurus dengan konstanta a (bandingkan dengan persamaan van der Waals di atas – ruas kiri). Semakin besar nilai n2/V2, semakin besar juga gaya tarik antara molekul-molekul (a). Sebaliknya, apabila tekanan gas (P) kecil, maka volume gas (V) menjadi besar. Semakin besar V, semakin kecil n2/V2. Semakin kecil n2/V2, gaya tarik antara molekul juga semakin kecil. Karenanya ketika tekanan gas kecil/tidak terlalu besar, an2/V2 bisa diabaikan…

(V – bn) = Selisih antara volume gas dengan volume total molekul-molekul gas. Konstanta b menyatakan besarnya volume satu mol molekul gas. n = jumlah mol. Hasil kali antara b dan n (bn) = jumlah volume total molekul-molekul gas. Jika tekanan gas (P) semakin besar maka volume gas (V) semakin kecil. Semakin kecil V, semakin kecil (V – bn). Ini berarti jarak antara molekul bertambah dekat dan tentu saja gaya tarik antara molekul-molekul semakin besar. Sebaliknya, jika tekanan gas semakin kecil, maka volume gas semakin besar. Semakin besar volume gas, semakin besar (V – bn). Semakin besar (V – bn), semakin kecil gaya tarik antara molekul-molekul gas. Dengan demikian, ketika tekanan gas tidak terlalu besar, (V – bn) bisa diabaikan….

Kita bisa mengatakan bahwa persamaan keadaan van der Waals menggambarkan keadaan gas riil secara lebih teliti dibandingkan dengan persamaan gas ideal. Ketika tekanan dan kerapatan gas cukup besar maka persamaan van der Waals memberikan hasil yang lebih akurat. Btw, apabila tekanan gas tidak terlalu besar, maka (an2/V2) dan (V – bn) bisa diabaikan, sehingga persamaan keadaan van der Waals akan berubah menjadi persamaan keadaan gas ideal (Hukum gas ideal). Sekian dan sampai jumpa lagi di episode berikutnya… semoga dirimu tidak pusink2 setelah bergulat dengan om waals ;)



Hukum pertama termodinamika


Pernah memanaskan air ? Kalau kita panaskan air menggunakan wadah seperti panci, misalnya, biasanya setelah air mendidih, tutup panci bisa bergerak sendiri. Tutup panci bisa bergerak karena ditendang ;) oleh uap yang lagi kepanasan dalam panci… Ingin bebas, katanya. Sudah bosan hidup di penjara… Ada lagi contoh yang mirip. Dirimu pernah ngemil popcorn ? Mudah2an sudah… Kalau belum, minta saja di toko terdekat. Ssttt… jangan lupa bawa uang receh secukupnya, biar dirimu tidak diomelin. Btw, tahu cara membuat popcorn ? Biasanya popcorn dimasukkan ke dalam wadah lalu dipanaskan. Setelah kepanasan, biji popcorn berdisco ria dengan teman-temannya dan mendorong penutup wadah. Aneh ya, cuma dipanasi dengan nyala api, biji popcorn dalam wadah meletup dan loncat-loncat sendiri. Saking senangnya, penutup wadah jadi korban kenakalan mereka ;) mengapa bisa terjadi seperti itu ?

Proses Termodinamika

Dalam postingan sebelumnya, gurumuda sudah menjelaskan secara panjang pendek mengenai Kalor (Q), Kerja (W), Sistem dan Lingkungan. Sebaiknya pelajari terlebih dahulu materi sebelumnya, biar dirimu nyambung dengan penjelasan gurumuda dalam pembahasan ini…

Kalor (Q) merupakan energi yang berpindah dari satu benda ke benda yang lain akibat adanya perbedaan suhu. Berkaitan dengan sistem dan lingkungan, bisa dikatakan bahwa kalor merupakan energi yang berpindah dari sistem ke lingkungan atau energi yang berpindah dari lingkungan ke sistem akibat adanya perbedaan suhu. Jika suhu sistem lebih tinggi dari suhu lingkungan, maka kalor akan mengalir dari sistem menuju lingkungan. Sebaliknya, jika suhu lingkungan lebih tinggi dari suhu sistem, maka kalor akan mengalir dari lingkungan menuju sistem.

Jika Kalor (Q) berkaitan dengan perpindahan energi akibat adanya perbedaan suhu, maka Kerja (W) berkaitan dengan perpindahan energi yang terjadi melalui cara-cara mekanis (mekanis tuh berkaitan dengan gerak)… Misalnya jika sistem melakukan kerja terhadap lingkungan, maka energi dengan sendirinya akan berpindah dari sistem menuju lingkungan. Sebaliknya jika lingkungan melakukan kerja terhadap sistem, maka energi akan berpindah dari lingkungan menuju sistem.

Salah satu contoh sederhana berkaitan dengan perpindahan energi antara sistem dan lingkungan yang melibatkan Kalor dan Kerja adalah proses pembuatan popcorn. Dirimu ngerti popcorn tidak ? biji jagung yang ada bunganya :) Gurumuda kurang ngerti proses pembuatan popcorn secara mendetail. Btw, garis besarnya seperti ini… Biasanya popcorn dimasukkan ke dalam wadah tertutup (panci atau alat masak lainnya). Selanjutnya, wadah tertutup tersebut dipanasi dengan nyala api kompor. Adanya tambahan kalor dari nyala api membuat biji popcorn dalam panci kepanasan dan meletup. Ketika meletup, biasanya biji popcorn berjingkrak-jingkrak dalam panci dan mendorong penutup panci. Gaya dorong biji popcorn cukup besar sehingga kadang tutup panci bisa berguling ria… Untuk kasus ini, kita bisa menganggap popcorn sebagai sistem, panci sebagai pembatas dan udara luar, nyala api dkk sebagai lingkungan. Karena terdapat perbedaan suhu, maka kalor mengalir dari lingkungan (nyala api) menuju sistem (biji popcorn). Adanya tambahan kalor menyebabkan sistem (biji popcorn) memuai dan meletup sehingga mendorong penutup panci (si biji popcorn tadi melakukan kerja terhadap lingkungan). Dalam proses ini, keadaan popcorn berubah. Keadaan popcorn berubah karena suhu, tekanan dan volume popcorn berubah saat memuai dan meletup… meletupnya popcorn hanya merupakan salah satu contoh perubahan keadaan sistem akibat adanya perpindahan energi antara sistem dan lingkungan. Masih sangat banyak contoh lain, sebagiannya sudah gurumuda ulas pada bagian pengantar… Perubahan keadaan sistem akibat adanya perpindahan energi antara sistem dan lingkungan yang melibatkan Kalor dan Kerja, disebut sebagai proses termodinamika.

Energi dalam dan Hukum Pertama Termodinamika

Pada postingan sebelumnya, gurumuda sudah menjelaskan secara singkat mengenai energi dalam (U). Energi dalam sistem merupakan jumlah seluruh energi kinetik molekul sistem, ditambah jumlah seluruh energi potensial yang timbul akibat adanya interaksi antara molekul sistem. Kita berharap bahwa jika kalor mengalir dari lingkungan menuju sistem (sistem menerima energi), energi dalam sistem akan bertambah… Sebaliknya, jika sistem melakukan kerja terhadap lingkungan (sistem melepaskan energi), energi dalam sistem akan berkurang…

Dengan demikian, dari kekekalan energi, kita bisa menyimpulkan bahwa perubahan energi dalam sistem = Kalor yang ditambahkan pada sistem (sistem menerima energi) – Kerja yang dilakukan oleh sistem (sistem melepaskan energi). Secara matematis, bisa ditulis seperti ini :

hukum-pertama-termodinamika-1

Keterangan :

delta U = Perubahan energi dalam

Q = Kalor

W = Kerja

Persamaan ini berlaku untuk sistem tertutup (Sistem tertutup merupakan sistem yang hanya memungkinkan pertukaran energi antara sistem dengan lingkungan). Untuk sistem tertutup yang terisolasi, tidak ada energi yang masuk atau keluar dari sistem, karenanya, perubahan energi dalam = 0. Persamaan ini juga berlaku untuk sistem terbuka jika kita memperhitungkan perubahan energi dalam sistem akibat adanya penambahan dan pengurangan jumlah zat (Sistem terbuka merupakan sistem yang memungkinkan terjadinya pertukaran materi dan energi antara sistem tersebut dengan lingkungan). Mengenai sistem terbuka dan tertutup telah gurumuda jelaskan pada postingan sebelumnya…

Hukum pertama termodinamika merupakan pernyataan Hukum Kekekalan Energi dan ketepatannya telah dibuktikan melalui banyak percobaan (seperti percobaan om Jimi Joule). Perlu diketahui bahwa hukum ini dirumuskan pada abad kesembilan belas, setelah kalor dipahami sebagai energi yang berpindah akibat adanya perbedaan suhu.

Energi dalam merupakan besaran yang menyatakan keadaan mikroskopis sistem. Besaran yang menyatakan keadaan mikroskopis sistem (energi dalam) tidak bisa diketahui secara langsung. Yang kita analisis dalam persamaan Hukum Pertama Termodinamika hanya perubahan energi dalam saja. Perubahan energi dalam bisa diketahui akibat adanya energi yang ditambahkan pada sistem dan energi yang dilepaskan sistem dalam bentuk kalor dan kerja. Jika besaran yang menyatakan keadaan mikroskopis sistem (energi dalam) tidak bisa diketahui secara langsung, maka besaran yang menyatakan keadaan makroskopis bisa diketahui secara langsung. Besaran yang menyatakan keadaan makroskopis adalah suhu (T), tekanan (p), volume (V) dan massa (m) atau jumlah mol (n). Ingat ya, Kalor dan Kerja hanya terlibat dalam proses perpindahan energi antara sistem dan lingkungan. Kalor dan Kerja bukan merupakan besaran yang menyatakan keadaan sistem.

Aturan tanda untuk Kalor (Q) dan Kerja (W)

Aturan tanda untuk Kalor dan Kerja disesuaikan dengan persamaan Hukum Pertama Termodinamika. Kalor (Q) dalam persamaan di atas merupakan kalor yang ditambahkan pada sistem (Q positif), sedangkan Kerja (W) pada persamaan di atas merupakan kerja yang dilakukan oleh sistem (W positif). Karenanya, jika kalor meninggalkan sistem, maka Q bernilai negatif. Sebaliknya, jika kerja dilakukan pada sistem, maka W bernilai negatif. Pahami perlahan-lahan….

Contoh soal 1 :

Jika kalor sebanyak 2000 Joule ditambahkan pada sistem, sedangkan sistem melakukan kerja 1000 Joule, berapakah perubahan energi dalam sistem ?

Panduan jawaban :

hukum-pertama-termodinamika-2

Sistem mendapat tambahan kalor (sistem menerima energi) sebanyak 2000 Joule. Sistem juga melakukan kerja (sistem melepaskan energi) 1000 Joule. Dengan demikian, perubahan energi sistem = 1000 Joule.

Contoh soal 2 :

Jika kalor sebanyak 2000 Joule meninggalkan sistem dan sistem melakukan kerja 1000 Joule, berapakah perubahan energi dalam sistem ?

Panduan jawaban :

Ingat ya, jika kalor meninggalkan sistem, berarti Q bernilai negatif

hukum-pertama-termodinamika-3Kalor meninggalkan sistem (sistem melepaskan energi) sebanyak 2000 Joule. Sistem juga melakukan kerja (sistem melepaskan energi) sebesar 1000 Joule. Dengan demikian, energi dalam sistem berkurang sebanyak 3000 J.

Contoh soal 3 :

Jika kalor sebanyak 2000 Joule ditambahkan pada sistem dan kerja 1000 Joule dilakukan pada sistem, berapakah perubahan energi dalam sistem ?

Panduan jawaban :

Ingat ya, jika kerja dilakukan pada sistem, berarti W bernilai negatif

hukum-pertama-termodinamika-4

Sistem mendapat tambahan kalor (sistem menerima energi) sebanyak 2000 Joule dan kerja dilakukan pada sistem (sistem menerima energi) 1000 Joule. Dengan demikian, energi dalam sistem bertambah sebanyak = 3000 Joule.

Pahami perlahan-lahan ya. Jangan pake hafal, nanti dirimu cepat lupa…

Catatan :

Pertama, kebanyakan sistem yang kita analisis secara teoritis dalam pokok bahasan ini adalah gas. Kita menggunakan gas, karena keadaan makroskopis gas (suhu, tekanan dan volume) lebih mudah diketahui. Dalam menganalisis gas, kita tetap menganggap gas sebagai gas ideal. Tujuannya hanya untuk mempermudah analisis saja. Kita tidak menggunakan gas riil karena pada tekanan yang cukup besar, biasanya gas riil berperilaku menyimpang. Karenanya analisis kita menjadi lebih sulit…

Kedua, jika sistem yang kita analisis adalah gas ideal, maka energi dalam bisa dihitung menggunakan persamaan yang menyatakan hubungan antara energi dalam gas ideal dengan suhu gas ideal : U = 3/2 nRT (persamaan energi dalam gas ideal monoatomik). Persamaan ini kita turunkan dari teori kinetik. Penurunannya telah dibahas dalam materi Teori Kinetik Gas.

Sebaiknya pahami terlebih dahulu konsep-konsep dasar yang telah dijelaskan dalam Teori Kinetik Gas, biar dirimu tidak kebingungan ;) Download saja ebooknya.

Kerja yang dilakukan sistem selama perubahan volume

Sebelum melangkah lebih jauh, terlebih dahulu kita tinjau kerja yang dilakukan sistem terhadap lingkungan. Untuk menghitung besarnya kerja (W) yang dilakukan sistem, kita tinjau gas ideal yang berada dalam sebuah wadah yang ditutup dengan sebuah penghisap/piston. Penghisap bisa digerakkan naik dan turun. Gambar ini disederhanakan menjad dua dimensi. Anggap saja gambar ini tiga dimensi. Volume = panjang x lebar x tinggi…

hukum-pertama-termodinamika-5

Gas ideal diwakili oleh titik-titik yang terletak di dalam wadah. Alas wadah bersentuhan dengan sebuah benda yang memiliki suhu yang lebih tinggi (mirip seperti air dalam panci yang dipanaskan di atas nyala api). Benda bersuhu tinggi tidak disertakan dalam gambar ;) , bayangkan saja dalam pikiran ya :( Gas ideal dalam wadah merupakan sistem, sedangkan benda-benda lainnya yang berada di luar wadah, termasuk benda bersuhu tinggi yang bersentuhan dengan alas wadah, merupakan lingkungan. Karena suhu lingkungan lebih tinggi dari suhu sistem, maka kalor dengan sendirinya mengalir dari lingkungan menuju sistem. Adanya sumbangan energi dari lingkungan menyebabkan energi dalam sistem (gas ideal) bertambah. Energi dalam gas ideal berbanding lurus dengan suhu (U = 3/2 nRT), karenanya ketika energi dalam gas ideal bertambah, suhu gas ideal juga meningkat. Peningkatan suhu gas ideal menyebabkan gas ideal memuai dan mendorong piston sejauh s. Ketika mendorong piston sejauh s, sistem (gas ideal) melakukan kerja terhadap lingkungan (udara luar).

Pada mulanya tekanan sistem besar (P1) dan volume sistem kecil (V1). Tekanan berbanding terbalik dengan volume (ingat lagi materi teori kinetik gas). Setelah kalor mengalir dari lingkungan menuju sistem dan sistem melakukan kerja terhadap lingkungan, volume sistem bertambah (V2) dan tekanan sistem berkurang (P2).

Besarnya kerja yang dilakukan sistem pada proses di atas adalah :

Kerja (W) = Gaya dorong (F) x perpindahan (s). Karena gaya dorong (F) = tekanan (P) x luas permukaan (A) piston, maka persamaan Kerja bisa ditulis menjadi :

W = Fs —– F = PA

W = PAs —– As = V

W = PV

Perlu diketahui bahwa kerja yang dilakukan sistem terjadi selama perubahan volume. Karenanya, kerja total yang dilakukan sistem bisa diperoleh dengan mengalikan perubahan tekanan dan perubahan volume. Secara matematis ditulis seperti ini :

W = (tekanan akhir – tekanan awal)(volume akhir – volume awal)

W = (P2-P1)(V2-V1)

Catatan :

Pertama, perubahan volume sistem (gas ideal) pada proses di atas bisa diketahui dengan mudah. Volume awal dan volume akhir sistem bisa diketahui dengan menghitung volume wadah. Dengan demikian, untuk menghitung besarnya kerja (W) yang dilakukan oleh sistem, kita perlu mengetahui bagaimana perubahan tekanan selama berlangsungnya proses.

Apabila tekanan (p) sistem berubah secara tidak teratur seiring terjadinya perubahan volume (V), maka besarnya kerja yang dilakukan sistem bisa dihitung menggunakan kalkulus. Kalau dirimu belum terbiasa dengan kalkulus, ada alternatif lain yang bisa digunakan. Terlebih dahulu kita gambarkan grafik yang menyatakan hubungan antara tekanan dan volume. Besarnya kerja yang dilakukan oleh sistem = luasan yang diarsir di bawah kurva p-V.

Grafik tekanan vs volume untuk perubahan tekanan yang terjadi secara tidak teratur

hukum-pertama-termodinamika-6Mula-mula tekanan sistem = p1 (tekanan besar) dan volume sistem = V1 (volume kecil). Setelah sistem melakukan kerja terhadap lingkungan, tekanan sistem berubah menjadi p2 (tekanan kecil) dan volume sistem berubah menjadi V2 (volume besar). Besarnya kerja (W) yang dilakukan sistem = luasan yang diarsir. Bentuk kurva melengkung karena tekanan sistem (gas ideal) berubah secara tidak teratur selama proses.

Apabila tekanan (p) sistem tidak berubah alias selalu konstan seiring terjadinya perubahan volume (V), maka besarnya kerja yang dilakukan sistem bisa dihitung dengan mudah. Besarnya kerja yang dilakukan sistem bisa dihitung menggunakan persamaan atau bisa diketahui melalui luasan yang diarsir di bawah kurva P-V. Untuk kasus ini, persamaan kerja di atas bisa dimodifikasi seperti ini :

W = (P2-P1)(V2-V1)

Karena tekanan (p) selalu konstan, maka P2 = P1 = P

W = P(V2-V1)

Grafik tekanan vs volume untuk proses di mana tekanan selalu konstan alias tidak berubah :

hukum-pertama-termodinamika-7Mula-mula volume sistem = V1 (volume kecil). Setelah sistem melakukan kerja terhadap lingkungan, volume sistem berubah menjadi V2 (volume besar). Tekanan sistem selalu konstan alias tidak berubah. Besarnya kerja (W) yang dilakukan sistem = luasan yang diarsir.

Kedua, sistem melakukan kerja terhadap lingkungan apabila volume sistem bertambah. Demikian juga sebaliknya, lingkungan melakukan kerja terhadap sistem apabila volume sistem berkurang. Jika volume sistem tidak berubah selama proses maka sistem tidak bisa melakukan kerja terhadap lingkungan dan lingkungan juga tidak bisa melakukan kerja terhadap sistem. Dalam hal ini, kerja (W) = 0.

Penerapan Hukum Pertama Termodinamika

pada beberapa proses Termodinamika

Sebelumnya kita sudah membahas Hukum Pertama Termodinamika dan menganalisis usaha yang dilakukan oleh sistem. Kali ini kita mencoba meninjau beberapa penerapan Hukum Pertama Termodinamika dalam empat proses termodinamika. Keempat proses termodinamika yang dimaksud adalah proses isotermal, isokorik, isobarik dan adiabatik. Istilah aneh ini berasal dari bahasa yunani. Isotermal = suhu yang sama atau suhu selalu konstan, isokorik = volume yang sama atau volume selalu konstan, isobarik = tekanan yang sama atau tekanan selalu konstan. Jangan pake hafal… ;)

Proses Isotermal (suhu selalu konstan)

Terlebih dahulu kita tinjau penerapan hukum pertama termodinamika pada proses isotermal. Dalam proses Isotermal, suhu sistem dijaga agar selalu konstan… Sistem yang kita analisis secara teoritis adalah gas ideal. Suhu gas ideal berbanding lurus dengan energi dalam gas ideal (U = 3/2 nRT). Karena T tidak berubah maka U juga tidak berubah. Dengan demikian, jika diterapkan pada proses isotermal, persamaan Hukum pertama termodinamika akan berubah bentuk seperti ini :

hukum-pertama-termodinamika-8Dari hasil ini, kita bisa menyimpulkan bahwa pada proses isotermal (suhu konstan), kalor (Q) yang ditambahkan pada sistem digunakan sistem untuk melakukan kerja (W).

Perubahan tekanan dan volume sistem pada proses isotermal digambarkan melalui grafik di bawah :

hukum-pertama-termodinamika-9Mula-mula volume sistem = V1 (volume kecil) dan tekanan sistem = P1 (tekanan besar). Agar suhu sistem selalu konstan maka setelah kalor ditambahkan pada sistem, sistem memuai dan melakukan kerja terhadap lingkungan. Setelah sistem melakukan kerja terhadap lingkungan, volume sistem berubah menjadi V2 (volume sistem bertambah) dan tekanan sistem berubah menjadi P2 (tekanan sistem berkurang). Bentuk grafik melengkung karena tekanan sistem tidak berubah secara teratur selama proses. Besarnya kerja yang dilakukan sistem = luasan yang diarsir.


Proses Adiabatik

Dalam proses adiabatik, tidak ada kalor yang ditambahkan pada sistem atau meninggalkan sistem (Q = 0). Proses adiabatik bisa terjadi pada sistem tertutup yang terisolasi dengan baik. Untuk sistem tertutup yang terisolasi dengan baik, biasanya tidak ada kalor yang dengan seenaknya mengalir ke dalam sistem atau meninggalkan sistem. Proses adiabatik juga bisa terjadi pada sistem tertutup yang tidak terisolasi. Untuk kasus ini, proses harus dilakukan dengan sangat cepat sehingga kalor tidak sempat mengalir menuju sistem atau meninggalkan sistem.

Jika diterapkan pada proses adiabatik, persamaan Hukum pertama termodinamika akan berubah bentuk seperti ini :

hukum-pertama-termodinamika-10

Apabila sistem ditekan dengan cepat (kerja dilakukan terhadap sistem), maka kerja bernilai negatif. Karena W negatif, maka U bernilai positif (energi dalam sistem bertambah). Sebaliknya jika sistem berekspansi atau memuai dengan cepat (sistem melakukan kerja), maka W bernilai positif. Karena W positif, maka U bernilai negatif (energi dalam sistem berkurang).

Energi dalam sistem (gas ideal) berbanding lurus dengan suhu (U = 3/2 nRT), karenanya jika energi dalam sistem bertambah maka sistem juga bertambah. Sebaliknya, jika energi dalam sistem berkurang maka suhu sistem berkurang.

Perubahan tekanan dan volume sistem pada proses adiabatik digambarkan melalui grafik di bawah :

hukum-pertama-termodinamika-11Kurva adiabatik pada grafik ini (kurva 1-2) lebih curam daripada kurva isotermal (kurva 1-3). Perbedaan kecuraman ini menunjukkan bahwa untuk kenaikan volume yang sama, tekanan sistem berkurang lebih banyak pada proses adiabatik dibandingkan dengan proses isotermal. Tekanan sistem berkurang lebih banyak pada proses adiabatik karena ketika terjadi pemuaian adiabatik, suhu sistem juga berkurang. Suhu berbanding lurus dengan tekanan, karenanya apabila suhu sistem berkurang, maka tekanan sistem juga berkurang. Sebaliknya pada proses isotermal, suhu sistem selalu konstan. Dengan demikian pada proses isotermal suhu tidak ikut mempengaruhi penurunan tekanan.

Salah satu contoh proses yang mendekati adiabatik terjadi pada mesin pembakaran dalam, misalnya mesin diesel dan mesin motor yang pakai bensin. Pada mesin diesel, udara dimasukan ke dalam silinder dan udara yang berada di dalam silinder ditekan dengan cepat menggunakan piston (kerja dilakukan pada udara). Proses penekanan adiabatik (pengurangan volume sistem) digambarkan melalui kurva 2-1. Karena ditekan dengan cepat secara adiabatik maka suhu udara naik dengan cepat. Pada saat yang sama, solar disemprotkan ke dalam silinder lewat injektor dan campuran terpicu seketika (terjadi proses pembakaran)… Pada mesin motor yang pakai bensin, campuran udara dan bensin dimasukkan ke dalam silinder kemudian ditekan dengan cepat menggunakan piston. Karena ditekan dengan cepat secara adiabatik maka suhunya naik dengan cepat. Pada saat yang sama, busi memercikan bunga api sehingga terjadi proses pembakaran. Selengkapnya akan dibahas pada episode berikutnya…

Proses Isokorik (volume selalu konstan)

Dalam proses Isokorik, volume sistem dijaga agar selalu konstan. Karena volume sistem selalu konstan, maka sistem tidak bisa melakukan kerja pada lingkungan. Demikian juga sebaliknya, lingkungan tidak bisa melakukan kerja pada sistem.

Jika diterapkan pada proses isokorik, persamaan Hukum pertama termodinamika akan berubah bentuk seperti ini :

hukum-pertama-termodinamika-12Dari hasil ini, kita bisa menyimpulkan bahwa pada proses isokorik (volume konstan), kalor (Q) yang ditambahkan pada sistem digunakan untuk menaikkan energi dalam sistem.

Perubahan tekanan dan volume sistem pada proses isokorik digambarkan melalui grafik di bawah :

hukum-pertama-termodinamika-13Mula-mula tekanan sistem = p1 (tekanan kecil). Adanya tambahan kalor pada sistem menyebabkan energi dalam sistem bertambah. Karena energi dalam sistem bertambah maka suhu sistem (gas ideal) meningkat (U = 3/2 nRT). Suhu berbanding lurus dengan tekanan. Karenanya, jika suhu sistem meningkat, maka tekanan sistem bertambah (p2). Karena volume sistem selalu konstan maka tidak ada kerja yang dilakukan (tidak ada luasan yang diarsir).

Catatan :

Sebelumnya dikatakan bahwa dalam proses isokorik, sistem tidak bisa melakukan kerja terhadap lingkungan. Demikian juga sebaliknya, lingkungan tidak bisa melakukan kerja terhadap sistem. Hal ini disebabkan karena pada proses isokorik, volume sistem selalu konstan alias tidak berubah. Btw, terdapat jenis kerja tertentu yang tidak melibatkan perubahan volume. Jadi walaupun volume sistem konstan alias tidak berubah, kerja masih bisa dilakukan terhadap sistem. Misalnya terdapat sebuah kipas + baterai dalam sebuah wadah tertutup. Kipas bisa berputar menggunakan energi yang disumbangkan baterai. Untuk kasus ini, kipas, baterai dan udara yang berada di dalam wadah dianggap sebagai sistem. Ketika kipas berputar, kipas melakukan kerja terhadap udara yang ada dalam wadah. Pada saat yang sama, energi kinetik kipas berubah menjadi energi dalam udara. Energi listrik pada baterai tentu saja berkurang karena sudah berubah bentuk menjadi energi dalam udara. Contoh ini hanya mau menunjukkan bahwa pada proses isokorik (volume selalu konstan), kerja masih bisa dilakukan terhadap sistem (kerja yang tidak melibatkan perubahan volume).

Proses Isobarik (tekanan selalu konstan)

Dalam proses Isobarik, tekanan sistem dijaga agar selalu konstan. Karena yang konstan adalah tekanan, maka perubahan energi dalam (delta U), kalor (Q) dan kerja (W) pada proses isobarik tidak ada yang bernilai nol. Dengan demikian, persamaan hukum pertama termodinamika tetap utuh seperti semula :

hukum-pertama-termodinamika-14Perubahan tekanan dan volume gas pada proses isobarik digambarkan melalui grafik di bawah :

hukum-pertama-termodinamika-15Mula-mula volume sistem = V1 (volume kecil). Karena tekanan dijaga agar selalu konstan maka setelah kalor ditambahkan pada sistem, sistem memuai dan melakukan kerja terhadap lingkungan. Setelah melakukan kerja terhadap lingkungan, volume sistem berubah menjadi V2 (volume sistem bertambah). Besarnya kerja (W) yang dilakukan sistem = luasan yang diarsir.

Contoh soal 1 :

Kurva 1-2 pada dua diagram di bawah menunjukkan pemuaian gas (pertambahan volume gas) yang terjadi secara adiabatik dan isotermal. Pada proses manakah kerja yang dilakukan oleh gas lebih kecil ?

hukum-pertama-termodinamika-16Guampang sekali kali ;) Kerja yang dilakukan gas pada proses adiabatik lebih kecil daripada kerja yang dilakukan gas pada proses isotermal. Luasan yang diarsir = kerja yang dilakukan gas selama proses pemuaian (pertambahan volume gas). Luasan yang diarsir pada proses adiabatik lebih sedikit dibandingkan dengan luasan yang diarsir pada proses isotermal.


Contoh soal 2 :

Serangkaian proses termodinamika ditunjukkan pada diagram di bawah… kurva a-b dan d-c = proses isokorik (volume konstan). Kurva b-c dan a-d = proses isobarik (tekanan konstan). Pada proses a-b, Kalor (Q) sebanyak 600 Joule ditambahkan ke sistem. Pada proses b-c, Kalor (Q) sebanyak 800 Joule ditambahkan ke sistem. Tentukan :

a) Perubahan energi dalam pada proses a-b

b) Perubahan energi dalam pada proses a-b-c

c) Kalor total yang ditambahkan pada proses a-d-c

hukum-pertama-termodinamika-17P1 = 2 x 105 Pa = 2 x 105 N/m2

P2 = 4 x 105 Pa = 4 x 105 N/m2

V1 = 2 liter = 2 dm3 = 2 x 10-3 m3

V2 = 4 liter = 2 dm3 = 4 x 10-3 m3

Panduan jawaban :

Sambil lihat diagram ya…

a) Perubahan energi dalam pada proses a-b

Pada proses a-b, kalor sebanyak 600 J ditambahkan ke sistem. Proses a-b = proses isokorik (volume konstan). Pada proses isokorik, penambahan kalor pada sistem hanya menaikkan energi dalam sistem. Dengan demikian, perubahan energi dalam sistem setelah menerima sumbangan kalor :

hukum-pertama-termodinamika-18

b) Perubahan energi dalam pada proses a-b-c

Proses a-b = proses isokorik (volume konstan). Pada proses a-b, kalor sebanyak 600 J ditambahkan ke sistem. Karena volume konstan maka tidak ada kerja yang dilakukan oleh sistem.

Proses b-c = proses isobarik (tekanan konstan). Pada proses b-c, kalor (Q) sebanyak 800 Joule ditambahkan ke sistem. Pada proses isobarik, sistem bisa melakukan kerja. Besarnya kerja yang dilakukan sistem pada proses b-c (proses isobarik) adalah :

W = P(V2-V1) — tekanan konstan

W = P2 (V2-V1)

W = 4 x 105 N/m2 (4 x 10-3 m3 - 2 x 10-3 m3)

W = 4 x 105 N/m2 (2 x 10-3 m3)

W = 8 x 102 Joule

W = 800 Joule

Kalor total yang ditambahkan ke sistem pada proses a-b-c adalah :

Q total = Qab + Qbc

Q total = 600 J + 800 J

Q total = 1400 Joule

Kerja total yang dilakukan oleh sistem pada proses a-b-c adalah :

W total = Wab + Wbc

W total = 0 + Wbc

W total = 0 + 800 Joule

W total = 800 Joule

Perubahan energi dalam sistem pada proses a-b-c adalah :

hukum-pertama-termodinamika-19Perubahan energi dalam pada proses a-b-c = 600 J

c) Kalor total yang ditambahkan pada proses a-d-c

Kalor total yang ditambahkan pada sistem bisa diketahui melalui persamaan di bawah :

hukum-pertama-termodinamika-20Kalor total yang ditambahkan pada proses a-d-c = perubahan energi dalam pada proses a-d-c + kerja total yang dilakukan pada proses a-d-c

Sebelum melanjutkan acara pengoprekan, baca terlebih dahulu pesan-pesan berikut ini ;)

Kalor dan kerja terlibat dalam perpindahan energi antara sistem dengan lingkungan, sedangkan perubahan energi dalam merupakan korban ;) dari adanya perpindahan energi antara sistem dan lingkungan. Karenanya perubahan energi dalam tidak bergantung pada proses perpindahan energi. Sebaliknya, kalor dan kerja sangat bergantung pada proses. Pada proses isokorik (volume sistem konstan), perpindahan energi hanya dalam bentuk kalor saja, sedangkan kerja tidak. Pada proses isobarik (tekanan konstan), perpindahan energi melibatkan kalor dan kerja…

Walaupun tidak bergantung pada proses, perubahan energi dalam bergantung pada keadaan awal dan keadaan akhir sistem. Apabila keadaan awal dan keadaan akhir sama maka perubahan energi dalam juga selalu sama, walaupun proses yang ditempuh berbeda-beda. Keadaan awal dan keadaan akhir untuk proses a-b-c pada grafik di atas = keadaan awal dan keadaan akhir proses a-d-c. Sambil lihat grafik ya… Dengan demikian, perubahan energi dalam pada proses a-d-c = 600 J

Perubahan energi dalam sudah beres. Sekarang giliran kerja yang dilakukan sistem

Kerja (W) total yang dilakukan pada proses a-d-c = W pada proses a-d + W pada proses d-c

Proses a-d merupakan proses isobarik (tekanan konstan), sedangkan proses d-c merupakan proses isokorik (volume konstan). Karena volume konstan maka tidak ada kerja yang dilakukan pada proses d-c. Terlebih dahulu kita hitung kerja yang dilakukan pada proses a-d. Sambil lihat grafik ya, biar dirimu tidak pake bingung….

Wad = P(V2-V1) — tekanan konstan

Wad = P1 (V2-V1)

Wad = 2 x 105 N/m2 (4 x 10-3 m3 - 2 x 10-3 m3)

Wad = 2 x 105 N/m2 (2 x 10-3 m3)

Wad = 4 x 102 Joule

Wad = 400 Joule

W total = W pada proses a-d + W pada proses d-c

W total = 400 Joule + 0

W total = 400 Joule

Dengan demikian, banyaknya kalor yang ditambahkan pada proses a-d-c adalah :

hukum-pertama-termodinamika-21

Contoh soal 3 :

1 liter air berubah menjadi 1671 liter uap ketika dididihkan pada tekanan 1 atm. Tentukan perubahan energi dalam dan besarnya kerja yang dilakukan air ketika menguap… (Kalor penguapan air = LV = 22,6 x 105 J/Kg)

Panduan jawaban :

Massa jenis air = 1000 Kg/m3

LV = 22,6 x 105 J/Kg

P = 1 atm = 1,013 x 105 Pa = 1,013 x 105 N/m2

V1 = 1 liter = 1 dm3 = 1 x 10-3 m3 (Volume air)

V2 = 1671 liter = 1671 dm3 = 1671 x 10-3 m3 (Volume uap)

a) Perubahan energi dalam

Perubahan energi dalam = Kalor yang ditambahkan pada air – Kerja yang dilakukan air ketika menguap.

Terlebih dahulu kita hitung Kalor (Q) yang ditambahkan pada air…

Q = mLV

Massa (m) air berapa ?

Massa jenis air = massa air / volume air

Massa air (m) = (massa jenis air)(volume air)

Massa air (m) = (1000 Kg/m3)(1 x 10-3 m3)

Massa air (m) = (1000 Kg/m3)(0,001 m3)

Massa air (m) = 1 Kg

Q = (1 Kg)(22,6 x 105 J/Kg)

Q = 22,6 x 105 J

Sekarang kita hitung Kerja (W) yang dilakukan oleh air ketika menguap. Ingat ya, pendidihan air terjadi pada tekanan tetap (proses isobarik).

W = p (V2 – V1)

W = 1,013 x 105 N/m2 (1671 x 10-3 m3 – 1 x 10-3 m3)

W = 1,013 x 105 N/m2 (1670 x 10-3 m3)

W = 1691,71 x 102 Joule

W = 1,7 x 105 Joule

Perubahan energi dalam air :

hukum-pertama-termodinamika-2221 x 105 J kalor yang ditambahkan pada air digunakan untuk menaikkan energi dalam (mengatasi gaya tarik antara molekul yang menjaga agar air tetap cair). Dengan kata lain, 21 x 105 J digunakan untuk mengubah air menjadi uap. Ketika air suah menjadi uap, 1,7 x 105 J yang tersisa dipakai untuk melakukan kerja…

Hukum Pertama Termodinamika pada manusia

Kita bisa menerapkan hukum pertama termodinamika pada manusia :

hukum-pertama-termodinamika-23

Agar bisa bertahan hidup, setiap makhluk hidup, baik manusia, hewan atau tumbuhan tentu saja membutuhkan energi. Kita tidak bisa belajar, jalan-jalan atau pacaran ;) kalau tubuh kita lemas tak berdaya karena kekurangan energi. Biasanya tubuh memperoleh energi dari makanan. Ketika menyantap makanan, kita membawa energi potensial kimia yang terkandung dalam makanan ke dalam tubuh. Adanya tambahan energi dari makanan menyebabkan energi potensial kimia dalam tubuh kita bertambah (delta U bertambah)…

Selanjutnya energi tersebut dipakai untuk melakukan Kerja (W). Banyak sekali bentuk kerja yang kita lakukan… Pacaran, jalan-jalan, berlari mengejar tikus ;) dkk…. Energi yang kita peroleh dari makanan juga digunakan tubuh untuk menghasilkan sel-sel yang baru, menggantikan sel-sel lama yang rusak… Adanya sel-sel yang baru membuat dirimu bisa bertambah panjang ;) , gendut…. Piss…

Selain dipakai untuk melakukan kerja, sebagian energi dibuang ke luar tubuh (udara dan sekitarnya) dalam bentuk kalor alias panas. Setiap proses metabolisme dalam tubuh biasanya menghasilkan kalor atau panas. Demikian juga ketika dirimu dan diriku melakukan kerja, tubuh pun terasa panas… Panas alias kalor tersebut dibuang melalui keringat (melalui poses penguapan) dkk…



Entropi (Pernyataan umum hukum kedua termodinamika)


Dalam postingan sebelumnya kita sudah mempelajari beberapa pernyataan khusus hukum kedua termodinamika. Perlu diketahui bahwa pernyataan khusus tersebut hanya bisa menjelaskan beberapa proses ireversibel saja. Pernyataan om Clausius hanya menjelaskan perpindahan kalor dan kaitannya dengan prinsip kerja mesin pendingin. Sebaliknya pernyataan om Kelvin dan om Planck berkaitan dengan prinsip kerja mesin kalor. Walaupun tampaknya berbeda, tetapi pada dasarnya kedua pernyataan ini berhubungan dengan perpindahan kalor. Btw, masih banyak proses ireversibel lainnya tidak bisa dijelaskan menggunakan kedua pernyataan tersebut. Setelah mencium tanah, buah mangga yang lezat dan mengundang selera tidak pernah meluncur ke atas lagi. Buku yang kita dorong tidak pernah bergerak kembali ke posisinya semula. Ketika adikmu yang sangat nakal menjatuhkan gelas ke lantai hingga pecah, serpihan-serpihan gelas yang tercecer di lantai tidak pernah ngumpul lagi dan membentuk gelas hingga utuh seperti semula… Apalagi ya… masih banyak atuh. mikirin sendiri ya… hiks2… pisss…

Karena pernyataan khusus hukum kedua termodinamika tidak bisa menjelaskan semua proses ireversibel maka kita membutuhkan pernyataan yang lebih umum. Adanya pernyataan umum ini diharapkan bisa menjelaskan semua proses ireversibel yang terjadi di alam semesta. Pernyataan umum hukum kedua termodinamika baru dirumuskan pada pertengahan abad kesembilan belas, melalui sebuah besaran yang diberi julukan entropi (S). Entropi bisa dianggap sebagai ukuran kuantitatif dari ketidakteraturan. Mengenai hal ini akan dibahas kemudian… Besaran entropi pertama kali diperkenalkan oleh om Clausius dan diturunkan dari siklus om Carnot (mesin kalor sempurna). Menurut om Clausius, besarnya perubahan entropi yang dialami oleh suatu sistem, ketika sistem tersebut mendapat tambahan kalor (Q) pada suhu tetap dinyatakan melalui persamaan di bawah :

entropi-a

Keterangan :

Delta S = Perubahan entropi (Joule/Kelvin)

Q = Kalor (Joule)

T = Suhu (Kelvin)

Entropi merupakan besaran yang menyatakan keadaan mikroskopis sistem, karenanya tidak bisa diketahui secara langsung. Yang kita tinjau hanya perubahan entropi saja… Mirip seperti perubahan energi dalam pada hukum pertama termodinamika.

Untuk membantumu lebih memahami pembahasan ini, kita obok-obok latihan soal saja :

Contoh soal 1 :

Sejumlah gas dalam sebuah wadah mengalami pemuaian adiabatik. Berapakah perubahan entropi gas tersebut ?

Panduan juawaban :

Selama proses adiabatik, tidak ada kalor yang masuk atau keluar sistem (gas). Karena Q = 0 maka delta S = 0. Bisa disimpulkan bahwa pada proses pemuaian adiabatik, entropi sistem tidak berubah alias selalu konstan…

Bagaimanakah dengan penekanan adiabatik ? Pada dasarnya sama saja. Selama penekanan adiabatik, tidak ada kalor yang masuk atau keluar dari sistem (Q = 0). Karenanya entropi sistem tidak berubah alias selalu konstan.

Contoh soal 2 :

Sebuah mesin Carnot menerima 2000 J kalor pada suhu 500 K, melakukan kerja dan membuang sejumlah kalor pada suhu 350 K. Tentukan jumlah kalor yang terbuang dan perubahan entropi total dalam mesin selama satu siklus…

Panduan jawaban :

TH = 500 K

QH = 2000 J

TL = 350 K

QL = ?

entropi-b

Persamaan ini datangnya dari mana-kah ? ingat pembahasan mengenai mesin carnot. Hasil yang sangat penting dari mesin Carnot adalah bahwa untuk mesin kalor yang sempurna, Kalor yang diterima (QH) sebanding dengan suhu TH dan Kalor yang dibuang (QL) sebanding dengan suhu TL. Pahami perlahan-lahan…

entropi-c

Ingat perjanjian tanda hukum pertama terModiNamikA. Jika sistem menerima kalor, Q bertanda positif. Sebaliknya jika sistem melepaskan kalor, Q bertanda negatif. Sistem untuk kasus ini adalah mesin carnot…

entropi-d

Selama satu siklus, mesin Carnot (mesin kalor sempurna) mengalami dua proses isotermal reversibel (pemuaian isotermal + penekanan isotermal) dan dua proses adiabatik reversibel (pemuaian adiabatik dan penekanan adiabatik). Selama proses pemuaian dan penekanan adiabatik, tidak ada kalor yang masuk atau keluar dari sistem (Q = 0). Karena Q = 0 maka perubahan entropi selama proses adiabatik = 0…

Selama pemuaian isotermal, mesin menyedot kalor (Q) sebanyak 2000 J pada suhu (T) 500 K. Karena mesin menyedot kalor maka Q bertanda positif. Perubahan entropi mesin selama pemuaian isotermal adalah :

entropi-e

Selama penekanan isotermal, mesin membuang kalor (Q) sebanyak 1400 J pada suhu (T) 350 K. Karena mesin membuang kalor maka Q bertanda negatif.

Perubahan entropi mesin selama penekanan isotermal adalah :

entropi-f

Perubahan entropi total = 4 J/K – 4 J/K = 0

Contoh soal 3 :

Sebuah mesin kalor menerima kalor (Q) sebanyak 600 Joule pada suhu 300 oC, melakukan kerja dan membuang sejumlah kalor pada suhu 100 oC. Tentukan jumlah kalor yang terbuang dan perubahan entropi total dalam mesin selama satu siklus…

Panduan jawaban :

TH = 300 K

QH = 600 J

TL = 100 K

QL = ?

entropi-gSelama satu siklus, mesin Carnot (mesin kalor sempurna) mengalami dua proses isotermal reversibel (pemuaian isotermal + penekanan isotermal) dan dua proses adiabatik reversibel (pemuaian adiabatik dan penekanan adiabatik). Selama proses pemuaian dan penekanan adiabatik, tidak ada kalor yang masuk atau keluar dari sistem (Q = 0). Karena Q = 0 maka perubahan entropi selama proses adiabatik = 0…

Selama pemuaian isotermal, mesin menyedot kalor (Q) sebanyak 600 J pada suhu (T) 300 K. Karena mesin menyedot kalor maka Q bertanda positif. Perubahan entropi mesin selama pemuaian isotermal adalah :

entropi-hSelama penekanan isotermal, mesin membuang kalor (Q) sebanyak 200 J pada suhu (T) 100 K. Karena mesin membuang kalor maka Q bertanda negatif.

Perubahan entropi mesin selama penekanan isotermal adalah :

entropi-j

Perubahan entropi total = 2 J/K – 2 J/K = 0

Dari contoh soal nomor 2 dan contoh soal nomor 3, tampak bahwa perubahan entropi total untuk proses reversibel = 0. Dengan kata lain, pada proses reversibel, entropi total selalu konstan…


Contoh soal 4 :

Sebongkah es batu bermassa 2 kg memiliki suhu 0 oC. Es batu tersebut diletakkan di dalam sebuah wadah dan dijemur di bawah sinar matahari. Karena mendapat sumbangan kalor dari udara dan matahari maka si es batu pun mencair… tentukan perubahan entropi es batu tersebut… (Kalor lebur air = 3,34 x 105 J/Kg)

Panduan juawaban :

Massa es batu = 2 kg

Suhu es batu = 0 oC + 273 = 273 K

Kalor lebur air = 3,34 x 105 J/Kg

Kalor yang diperlukan untuk meleburkan 2 kg es batu menjadi air adalah :

Q = mL

Q = (2 Kg)(3,34 x 105 J/Kg)

Q = 6,68 x 105 J

Q = 668 x 103 J

Ingat ya, selama proses peleburan (es batu berubah menjadi air), suhu selalu konstan. Karena suhu selalu konstan maka perubahan entropi es batu dihitung dengan suangat guampang :

entropi-k

Entropi es batu bertambah sebanyak 2,45 x 103 J/K. Perhatikan bahwa entropi lingkungan (wadah, udara, etc) tidak kita hitung…

Perhitungan di atas tampaknya mudah karena suhu air konstan. Apabila suhu tidak konstan maka perhitungannya menjadi lebih beribet ;) Seandainya perubahan suhu cukup besar maka perubahan entropi bisa diooprek menggunakan kalkulus. Sebaliknya jika perubahan suhu tidak terlalu besar, kita bisa menggunakan suhu rata-rata (lihat contoh soal 5).


Contoh soal 5 :

Segelas air bersuhu 26 oC dicampur dengan segelas air yang bersuhu 22 oC. Jika massa air dalam gelas = 2 kg (gelas raksasa ;) ), tentukan perubahan entropi air… Anggap saja air dicampur dalam sistem tertutup yang terisolasi. Ingat ya, perpindahan kalor alias panas termasuk proses ireversibel…

Panduan jawaban :

Kalor jenis air (c) = 4180 J/Kg Co

Massa air = 2 Kg (massa air sama).

Karena massa air sama, maka suhu akhir campuran = 24 oC (26 oC + 22 oC / 2 = 48 oC / 2 = 24 oC).

Jumlah kalor yang dilepaskan oleh air panas ketika suhunya menurun dari 26 oC – 24 oC :

Q = mc(delta T) = (2 Kg)(1 kkal/kg Co)(26 oC – 24 oC) = (2 Kg)(4180 J/kg Co)(2 oC) = 16720 J

Jumlah kalor yang disedot oleh air dingin ketika suhunya meningkat dari 22 oC – 24 oC :

Q = mc(delta T) = (2 Kg)(1 kkal/kg Co)(24 oC – 22 oC) = (2 Kg)(4180 J/kg Co)(2 oC) = 16720 J

Perubahan entropi total = Perubahan entropi air panas + perubahan entropi air dingin

entropi-l

Suhu rata-rata air panas = (26 oC + 24 oC) / 2 = 50 oC / 2 = 25 oC —- 25 + 273 = 298 K

Suhu rata-rata air dingin = (22 oC + 24 oC) / 2 = 46 oC / 2 = 23 oC —- 23 + 273 = 296 K

Air panas melepaskan kalor, karenanya Q bertanda negatif. Sebaliknya air dingin menyedot kalor, karenanya Q bertanda positif. Ingat lagi perjanjian tanda Q (hukum pertama termodinamika)

entropi-mEntropi air panas menurun sebesar 56,107 J/K

entropi-nEntropi air dingin bertambah sebesar 56,486 J/K

entropi-oEntropi total bertambah sebesar 0,379 J/K

Dari hasil pengoprekan ini, tampak bahwa walaupun entropi sebagian sistem berkurang (-56,107 J/K), entropi sebagian sistem bertambah dalam jumlah yang lebih besar (+ 56,486 J/K) sehingga entropi total selalu bertambah (+ 0,379 J/K). Bertambahnya entropi total sistem tertutup yang terisolasi akibat adanya proses ireversibel ternyata tidak hanya berlaku pada perpindahan kalor antara campuran air panas dan air dingin yang kita analisis di atas, tetapi berlaku juga untuk semua kasus yang diteliti oleh para ilmuwan. Jadi entropi total suatu sistem tertutup yang terisolasi hanya bisa tetap atau bertambah, tetapi tidak pernah berkurang… Entropi total selalu tetap jika proses terjadi secara reversibel. Apabila proses terjadi secara ireversibel maka entropi total selalu bertambah…

Pada dasarnya semua proses alamiah dalam kehidupan kita setiap hari bersifat ireversibel sehingga entropi total pasti bertambah. Kenyataan ini disimpulkan dalam sebaris kalimat gaul di bawah :

Entropi total sistem dan lingkungan selalu bertambah akibat adanya proses ireversibel.

Kalimat yang dicetak miring ini merupakan pernyataan umum hukum kedua termodinamika. Hukum kedua termodinamika agak berbeda dengan hukum-hukum fisika lainnya… Biasanya hukum fisika dinyatakan dalam bentuk persamaan (misalnya hukum kakek Newton) atau berupa hukum kekekalan (misalnya hukum kekekalan energi). Hukum kedua termodinamika hanya dinyatakan dalam sebaris kalimat yang bikin mumet. Sialnya lagi, hukum kedua malah mengatakan kepada kita bahwa entropi selalu bertambah. Pada dasarnya proses ireversibel terjadi setiap saat, karenanya entropi juga selalu bertambah seiring berlalunya waktu. Kalau entropi selalu bertambah seiring berlalunya waktu berarti suatu saat nanti entropi akan bernilai maksimum dunk. Wah, apa jadinya dunia nanti ;)

Btw, entropi tuh sebenarnya apa sich ? Dari tadi bahas entropi melulu tapi gak ngerti2 entropi tuh artinya apa… hiks2… Dari pada pusink seribu keliling lebih baik kita langsung menuju ke sasaran saja…

Entropi merupakan ukuran dari ketidakteraturan

Entropi dapat dianggap sebagai ukuran dari ketidakteraturan. Jika dikaitkan dengan pernyataan umum hukum kedua termodinamika, bisa dikatakan bahwa pada proses ireversibel, ketidakteraturan cenderung bertambah. Dengan kata lain, setiap proses ireversibel pada dasarnya menuju ke keadaan yang tidak teratur. Makna ketidakteraturan di sini mungkin kurang jelas, karenanya gurumuda jelaskan menggunakan contoh proses ireversibel yang terjadi dalam kehidupan sehari. Sebelum melangkah lebih jauh, baca terlebih dahulu pesan-pesan berikut ini :

Perlu diketahui bahwa konsep entropi pada mulanya hanya dihubungkan dengan proses ireversibel yang berkaitan dengan perubahan bentuk energi dan perpindahan energi. Setelah terlepas dari tangkainya dan jatuh bebas hingga mencium tanah, buah mangga tidak pernah meluncur ke atas lagi. Buku yang kita dorong lalu berhenti tidak pernah bergerak kembali ke arah kita. Ini adalah beberapa contoh proses ireversibel yang berkaitan dengan perubahan bentuk energi dan perpindahan energi dari satu benda ke benda yang lain. Proses tersebut hanya berlangsung pada satu arah saja, tetapi tidak pernah berlangsung pada arah sebaliknya. Buah mangga tidak pernah meluncur ke atas dengan sendirinya karena energi dalam berubah menjadi energi kinetik. Buku tidak pernah meluncur ke arah kita karena kalor alias panas yang timbul akibat gesekan berubah menjadi energi kinetik.

Btw, proses ireversibel yang terjadi di alam semesta ternyata tidak hanya berkaitan dengan perubahan bentuk energi dan perpindahan energi. Setelah dilahirkan, kita bertumbuh menjadi bayi, anak-anak, remaja, dewasa lalu menjadi tua lapuk dan akhirnya mati dimakan cacing ;) Apakah dirimu pernah melihat seorang tua berubah menjadi bayi ? tidak pernah… Handphone yang kita pakai lama kelamaan menjadi kusam dan rusak… Mobil baru yang pada mulanya licin dan bertenaga menjadi kurang licin dan lemas tak bertenaga setelah dirimu pakai selama beberapa tahun. Apakah dirimu pernah lihat mobil tua tiba-tiba saja menjadi baru lagi ? Atau Handphone kesayanganmu setiap hari semakin licin n bagus ? Tidak pernah… Setelah dipakai, handphone menjadi kusam dan rusak. Mobil juga demikian… Ini adalah beberapa contoh proses ireversibel yang tidak ada hubungannya dengan perubahan bentuk energi dan perpindahan energi…. Nah, setelah menyadari bahwa semua proses alamiah yang terjadi di alam semesta bersifat ireversibel maka konsep entropi menjadi meluas. Pembahasannya tidak hanya meliputi proses termodinamika saja tetapi mencakup banyak proses ireversibel lainnya di alam semesta…

Sekarang mari kita bahas beberapa proses ireversibel yang terjadi dalam kehidupan sehari-hari. Terlebih dahulu kita tinjau sebuah proses ireversibel sederhana berikut. Ini hanya pengantar saja, biar dirimu paham dengan konsep entropi serta kaitannya dengan proses ireversibel. Tataplah gambar di bawah dengan penuh semangat ;)

entropi-1

Misalnya dirimu punya sejumlah kelereng berwarna merah dan biru. Kelereng tersebut dimasukkan ke dalam sebuah wadah. Kelereng yang berwarna biru disusun secara rapi di bagian dasar, sedangkan kelereng berwarna merah disusun secara rapi di bagian atas (gambar kiri). Susunan kelerengmu dalam wadah tampak sangat teratur… Sebelah bawahnya biru semua, sebelah atasnya merah semua… Selanjutnya dirimu mengocok atau mengguncangkan wadah naik turun. Karena wadah digerakkan naik turun maka susunan kelereng yang pada mulanya sangat teratur berubah menjadi tidak teratur lagi (gambar kanan). Kelereng berwarna merah dan biru campur aduk menjadi satu ;) Semakin diguncang, susunan kelereng menjadi semakin tak teratur… Mungkin-kah setelah diguncang-guncang, susunan kelerengmu menjadi teratur seperti semula ? tidak mungkin terjadi… Silahkan dibuktikan kalau tidak percaya. Kelereng tidak mungkin menjadi teratur seperti semula… Ini merupakan sebuah contoh proses ireversibel alias tidak dapat balik. Setelah mengalami proses ireversibel, susunan kelereng yang pada mulanya sangat teratur berubah menjadi tidak teratur. Keteraturan telah berubah menjadi ketidakteraturan…

Hal yang sama terjadi pada proses ireversibel lainnya. Ketika kita menyentuhkan benda panas dan benda dingin, kalor akan mengalir dengan sendirinya dari benda panas menuju benda dingin… Kalor berhenti mengalir setelah kedua benda yang bersentuhan mencapai suhu yang sama. Proses ini bersifat ireversibel… Nah, pada mulanya kita mempunyai dua susunan molekul, yakni molekul yang mempunyai energi kinetik rata-rata yang besar (molekul-molekul penyusun benda panas) dan molekul yang mempunyai energi kinetik rata-rata yang kecil (molekul-molekul penyusun benda dingin). Setelah benda panas dan benda dingin mencapai suhu yang sama (molekul-molekul telah mempunyai energi kinetik rata-rata yang sama), dua susunan molekul tadi tidak bisa kita bedakan lagi. Susunan molekul-molekul yang pada mulanya teratur berubah menjadi tidak teratur. Mirip seperti susunan kelereng di atas… Setelah kedua benda mencapai suhu yang sama, keteraturan susunan molekul berubah menjadi ketidakteraturan (ketidakteraturan bertambah akibat adanya perpindahan kalor yang bersifat ireversibel).

Lebih jauh lagi, aliran kalor dari benda panas menuju benda dingin bisa dianggap seperti aliran kalor dari daerah bersuhu tinggi menuju daerah bersuhu rendah pada mesin kalor. Adanya aliran kalor dari daerah bersuhu tinggi menuju daerah bersuhu rendah membuat mesin kalor bisa melakukan kerja. Mesin kalor tidak bisa melakukan kerja apabila tidak ada aliran kalor. Dengan demikian, kita bisa membuat hubungan antara ukuran ketidakteraturan dengan kemampuan melakukan kerja. Setelah mencapai suhu yang sama, tidak ada lagi aliran kalor dari benda panas menuju benda dingin (ketidakteraturan bertambah). Karena tidak ada aliran kalor membuat mesin kalor tidak bekerja maka kita bisa mengatakan bahwa sistem yang tidak bisa melakukan kerja memiliki ketidakteraturan yang tinggi, sebaliknya sistem yang bisa melakukan kerja memiliki ketidakteraturan yang rendah…

Dari hasil ini, kita bisa membuat kesimpulan mengenai hubungan antara bentuk energi dengan ukuran ketidakteraturan. Pada dasarnya bentuk energi yang bisa digunakan untuk melakukan kerja adalah energi potensial. Energi potensial gravitasi air bisa digunakan untuk menggerakan turbin. Energi potensial kimia pada minyak bisa digunakan untuk menggerakan kendaraan. Energi potensial kimia dalam tubuh bisa kita gunakan untuk melakukan kerja, jalan-jalan, belajar… Energi potensial gravitasi buah mangga bisa digunakan untuk membocorkan atap rumah ;) Karena bentuk energi yang berguna bisa digunakan untuk melakukan kerja maka kita bisa mengatakan bahwa bentuk energi yang berguna tersebut lebih teratur, sebaliknya bentuk energi yang tidak berguna lebih tidak teratur. Bentuk energi yang tidak berguna adalah energi dalam dan kalor alias panas… Setelah mencium tanah, buah mangga tidak pernah meluncur ke atas lagi karena energi dalam berubah menjadi energi kinetik… Setelah kita mendorong buku, buku tersebut bergerak. Adanya gaya gesekan membuat buku berhenti bergerak… Untuk kasus ini, energi kinetik buku telah berubah menjadi kalor alias panas (panas timbul akibat adanya gesekan). Nah, dalam kenyataannya buku yang sedang diam tidak meluncur kembali ke arah kita karena kalor alias panas berubah menjadi energi kinetik… Dua contoh ini menunjukkan bahwa kalor alias panas merupakan dua bentuk energi yang tidak berguna. Bentuk energi yang tidak berguna tidak bisa digunakan untuk melakukan kerja. Dengan demikian kita bisa mengatakan bahwa kalor alias panas dan energi dalam memiliki ketidakteraturan yang tinggi…

Pada dasarnya proses perubahan bentuk energi, dari bentuk energi yang berguna menjadi bentuk energi yang tidak berguna selalu menaikkan ketidakteraturan… Istilah gaulnya, entropi selalu bertambah selama proses perubahan bentuk energi… Karena entropi selalu bertambah seiring berlalunya waktu maka semua bentuk energi yang berguna tersebut akan berubah bentuk menjadi tidak berguna. Energi akan selalu kekal dalam proses perubahan bentuk energi, tetapi bentuk energi yang teratur dan bisa digunakan untuk melakukan kerja berubah bentuk menjadi tidak teratur dan tidak bisa digunakan untuk melakukan kerja…

Entropi dan statistik

Sebelumnya kita sudah membahas bahwa entropi merupakan ukuran dari ketidakteraturan. Setiap proses ireversibel pada dasarnya menuju ke keadaan yang memiliki ketidakteraturan yang tinggi. Btw, gagasan ini mungkin tampak abstrak dan tidak terlalu jelas. Untuk lebih memahami konsep entropi, kita bisa menggunakan pendekatan statistik. Pemahaman akan konsep entropi menggunakan pendekatan statistik pertama kali digunakan oleh om Ludwig Boltzmann (1844-1906).

Pada awal tulisan ini gurumuda sudah menjelaskan bahwa entropi merupakan besaran yang menyatakan keadaan mikroskopis sistem. Besaran yang menyatakan keadaan makroskopis bisa diketahui secara langsung tetapi besaran yang menyatakan keadaan mikrokopis tidak bisa diketahui secara langsung. Untuk mengetahui keadaan mikroskopis, kita bisa meninjau keterkaitan antara keadaan makroskopis dan keadaan mikroskopis.

Punya uang receh seratus rupiah ? Uang receh seratus rupiah punya dua sisi, pada salah satu sisi terdapat gambar burung garuda dan sedangkan di sisi yang lain terdapat tulisan 100 rupiah. Nah, misalnya dirimu punya 4 uang receh seratus rupiah… kalau dirimu melempar keempat uang receh seratus rupiah di atas lantai, dalam sekali lemparan akan ada lima kemungkinan yang berbeda :

pertama, muncul gambar burung garuda semua (4 gambar);

kedua, muncul 3 gambar burung garuda, 1 tulisan seratus rupiah (3 gambar, 1 tulisan);

ketiga, muncul 2 gambar burung garuda, 2 tulisan seratus rupiah (2 gambar, 2 tulisan);

keempat, muncul 1 gambar burung garuda, 3 tulisan seratus rupiah (1 gambar, 3 tulisan);

kelima, muncul tulisan seratus rupiah semua (4 tulisan)…

Lima kemungkinan munculnya gambar atau tulisan ini kita sebut sebagai keadaan makroskopis (makro = besar). Sebaliknya, jika kita menyatakan keempat uang logam sebagai gambar atau tulisan, berarti kita menyatakan keadaan mikroskopis (mikro = kecil)… Biar paham, tataplah tabel di bawah dengan penuh kelembutan… pahami perlahan-lahan ya…

Keadaan makroskopis Keadaan mikroskopis yang mungkin (G = gambar, T = tulisan) Jumlah keadaan mikroskopis
4 gambar GGGG 1
3 gambar, 1 tulisan GGGT, GGTG, GTGG, TGGG 4
2 gambar, 2 tulisan GGTT, GTGT, TGGT, GTTG, TGTG, TTGG 6
1 gambar, 3 tulisan TTTG, TTGT, TGTT, GTTT 4
4 tulisan TTTT 1


16

Dalam sekali lemparan, terdapat 16 keadaan mikroskopis yang mungkin (Setiap uang receh mempunyai dua peluang. Empat uang receh mempunyai 16 kali peluang = 2 x 2 x 2 x 2 = 24 = 16). Peluang yang paling besar adalah muncul 2 gambar dan 2 tulisan (Terdapat 6 keadaan mikroskopis yang mungkin dari total 16 keadaan mikroskopis — 6/16 x 100 % = 37,5 %). Sebaliknya peluang yang paling kecil adalah muncul 4 gambar atau 4 tulisan (Masing-masing memiliki 1 keadaan mikroskopis yang mungkin — 1/16 x 100% = 6,25 %). Yang kita bahas ini hanya peluang alias probabilitas… Kalau kita melempar uang receh sebanyak 16 kali, belum tentu muncul 2 gambar dan 2 tulisan sebanyak 6 kali. Tapi kalau kita melempar uang receh sebanyak ribuan kali, peluang munculnya 2 gambar dan 2 tulisan bisa mendekati 37,5 %. Sebaiknya dibuktikan saja… Silahkan melempar empat uang receh seratus rupiah sebanyak 100 kali (1000 kali kalau mampu ;) ). Catat data yang diperoleh dalam satu kali lemparan… Setelah melempar uang receh sebanyak 100 kali, dirimu akan menemukan bahwa 2 gambar dan 2 tulisan paling sering muncul. Semakin banyak jumlah lemparan, peluang munculnya 2 gambar dan 2 tulisan mendekati 37,5 % dari total jumlah lemparan.

Sebelumnya kita hanya meninjau 4 uang receh. Apabila kita menambah jumlah uang receh maka jumlah keadaan mikroskopis semakin banyak. Misalnya kita punya 100 uang receh… Dalam sekali lemparan, terdapat 2100 = 1,27 x 1030 keadaan mikroskopis yang mungkin… Peluang yang paling besar adalah muncul 50 gambar dan 50 tulisan (Terdapat 1,01 x 1029 keadaan mikroskopis yang mungkin dari total 1,27 x 1030 keadaan mikroskopis). Sebaliknya peluang yang paling kecil adalah muncul 100 gambar atau 100 tulisan (Masing-masing hanya memiliki 1 keadaan mikroskopis yang mungkin dari total 1,27 x 1030 keadaan mikroskopis). Sangat kecil dan nyaris tidak mungkin… Jika uang receh kita sebanyak 1000 keping, peluang munculnya 1000 gambar atau 1000 tulisan tentu saja semakin kecil dan semakin tidak mungkin.

Untuk menghubungkan dengan konsep entropi, kita bisa menganggap semua gambar atau semua tulisan merupakan susunan yang teratur, sedangkan separuh gambar dan separuh tulisan merupakan susunan yang tidak teratur. Semakin banyak jumlah uang receh, probabilitas atau peluang untuk mendapatkan susunan yang teratur (semua gambar atau semua tulisan) menjadi semakin kecil dan nyaris tidak mungkin… Sebaliknya susunan yang tidak teratur (separuh gambar dan separuh tulisan) memiliki probabilitas atau peluang yang jauh lebih besar. Dari hasil ini tampak bahwa ketidakteraturan berkaitan erat dengan probabilitas. Keadaan yang paling mungkin adalah keadaan yang tidak teratur, sedangkan keadaan yang nyaris tidak mungkin adalah keadaan yang teratur.

Pernyataan umum hukum kedua termodinamika yang telah kita bahas sebelumnya mengatakan bahwa entropi atau ketidakteraturan selalu bertambah pada setiap proses ireversibel. Pernyataan hukum kedua termodinamika ini bisa kita pahami sebagai pernyataan probabilitas. Artinya setiap proses yang terjadi di alam semesta adalah proses yang memiliki probabilitas atau peluang yang paling besar. Hukum kedua termodinamika tidak melarang penurunan entropi pada setiap proses ireversibel, tetapi peluangnya sangat kecil bahkan nyaris tidak mungkin terjadi. Sebaliknya bertambahnya entropi memiliki peluang yang jauh lebih besar. Jumlah uang receh yang kita tinjau sebelumnya cuma 100… dalam kenyataannya dalam satu mol saja terdapat 6,02 x 1023 molekul… ini jumlah yang sangat besar. Keadaan mikroskopis yang mungkin dari jumlah ini tentu saja sangat besar, sehingga keteraturan memiliki peluang yang sangat kecil dan nyaris tidak mungkin…

Kalau kita menjatuhkan gelas ke lantai, serpihan-serpihan gelas yang tercecer di lantai bisa saja berkumpul lagi dan membentuk gelas hingga utuh seperti semula. Tetapi peluang kejadiannya sangat kecil sehingga tidak mungkin terjadi… ketika gelas masih utuh, posisi molekul-molekul lebih teratur. Ketika gelas jatuh hingga pecah sehingga serpihan-serpihan gelas tercecer di tanah, posisi molekul menjadi tidak teratur. Peluang untuk kembali ke posisi yang teratur sangat kecil sehingga mengharapkan bahwa molekul-molekul gelas tersebut ngumpul lagi adalah sesuatu yang mustahil. Apabila kita menyentuhkan benda panas dan benda dingin, kalor akan mengalir dengan sendirinya dari benda panas menuju benda dingin… benda panas memiliki molekul-molekul yang bergerak secara acak dan cepat, sebaliknya gerakan molekul-molekul penyusun benda dingin tidak terlalu cepat. Peluang molekul-molekul yang bergerak cepat tersebut untuk numbuk temannya atau nyebrang ke benda dingin jauh lebih besar daripada peluang molekul-molekul yang gerakannya lambat… siapa cepat dia dapat ;) kalor bisa saja berpindah dari benda dingin ke benda panas, tetapi peluang kejadiannya jauh lebih kecil. Kelereng biru dan merah pada ilustrasi di atas bisa saja kembali ke susunannya semula yang teratur. Tetapi peluang untuk kembali ke susunan yang teratur jauh lebih kecil. Susunan yang tidak teratur memiliki peluang yang jauh lebih besar. Demikian juga dengan pemuaian bebas yang dialami oleh gas dalam sebuah wadah tertutup. Wadah memiliki dua ruang, di mana kedua ruang dipisahkan oleh pembatas. Mula-mula gas berada dalam ruang sebelah kiri. Ketika pembatas dilepas, molekul-molekul gas akan berbondong-bondong nyebrang ke ruang sebelah kanan. Ruang sebelah kanan kosong, sedangkan ruang sebelah kiri berisi molekul-molekul yang sedang bergerak secara acak. Ketka pembatas di buka, molekul-molekul tersebut mempunyai peluang yang besar untuk nyebrang ke ruang kosong. Setelah molekul-molekul tersebut memenuhi seluruh volume wadah yang punya dua ruang tadi, mungkinkah semua molekul-molekul tersebut mengisi kembali ruang sebelah kiri ? bisa terjadi tetapi kemungkinannya sangat kecil. Dalam satu mol saja terdapat 6,02 x 1023 molekul… peluang yang mungkin bahwa semua molekul berada di ruang sebelah kiri adalah 1 dari jutaan kemungkinan yang ada. Satu berbanding jutaan adalah peluang sangat kecil dan nyaris mustahil…

Dari uraian panjang lebar dan bertele-tele sebelumnya, tampak bahwa hukum kedua termodinamika mengatakan kepada kita bahwa setiap proses yang terjadi di alam semesta adalah proses yang paling mungkin terjadi. Arah di mana proses di alam terjadi (menuju entropi yang tinggi) ditentukan oleh peluang atau probabilitas… ketidakteraturan memiliki probabilitas yang jauh lebih besar sehingga lebih mungkin terjadi…

Entropi = panah waktu

Entropi disebut juga sebagai panah waktu, karena bisa mengatakan kepada kita mengenai arah berjalannya waktu. Arah proses pada setiap proses alami adalah menuju ke keadaan yang tidak teratur… Apabila kita melihat kejadian yang sebaliknya, yakni keadaan tidak teratur dengan sendirinya berubah menjadi teratur, kita bisa mengatakan bahwa kejadiannya terbalik. Jika kita melihat serpihan-serpihan gelas yang tercecer di lantai ngumpul lagi dan membentuk gelas hingga utuh seperti semula, kita bisa mengatakan bahwa peristiwa tersebut terbalik. Hal tersebut tidak pernah terjadi dalam kehidupan kita setiap hari dan jika terjadi maka itu melangggar hukum kedua termodinamika. Dalam hal ini, waktu tidak pernah berjalan mundur dan ketidakteraturan tidak pernah berubah dengan sendirinya menjadi keteraturan. Hal yang paling mungkin terjadi dan selalu terjadi dalam kehidupan kita adalah keteraturan selalu bergerak menuju ketidakteraturan, waktu selalu berjalan maju, tidak mundur. Jika seorang tua berubah menjadi bayi, hal tersebut kita anggap tidak normal dan melanggar hukum kedua termodinamika. Atau tiba-tiba saja seseorang mengatakan bahwa ia datang dari tahun 2036 (Jhon Titor) adalah sesuatu yang aneh dan melanggar arah proses alami…